CMR nếu a+b+c=0 thì x =1 là 1 nghiệm của đa thức F(x)=ax^2+bx+c
Chứng tỏ rằng : a+b+c=0 thì x=1 là nghiệm của đa thức f(x)=ax2+bx+c
Ngoài ra nếu a#0 thì x=c/a là nghiệm của đa thức f(x).
\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\)
cho đa thức f(x)=ax^2+bx+c
a) biết f(0)=0,f(1)=2013 và f(-1)=2012.tính a,b,c
b)CMR nếu f(1)=2012,f(-2)=f(3)=2036 thì đa thức f(x) vô nghiệm
a, Theo bài ra ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2013\\a-b=2012\end{cases}}\)
Cộng vế với vế \(a+b+a-b=2013+2012\Leftrightarrow2a=4025\Leftrightarrow a=\frac{4025}{2}\)
\(\Rightarrow b=\frac{4025}{2}-2012=\frac{1}{2}\)
Vậy \(a=\frac{4025}{2};b=\frac{1}{2};c=0\)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
cho đa thức f(x)=ax^2+bx+c
a) nếu biết 14a+2b+3c=0. CMR:3 số f(-2);f(1);f(3) có ít nhất một nghiệm không âm
b)CMR nếu f(1)2012;f(-2)=f(3)=2036 thì đa thức f(x) voo nghiệm
Cho đa thức f(x) = ax2 + bx + c.
Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức f(x)
Thay \(x=1\) và đa thức \(f\left(x\right)=ax^2+bx+c\) ta được :
\(f\left(x\right)=a.1^2+b.1+c\)
\(f\left(x\right)=a+b+c\)
Mà giả thuyết cho \(a+b+c=0\) nên \(f\left(x\right)=a+b+c=0\)
Vậy \(x=1\) là một nghiệm của đa thức \(f\left(x\right)=ax^2+bx+c\)
Chúc bạn học tốt ~
Cho đa thức f(x)=ax2+ bx+ c
a) CMR: nếu a-b+c =0 thì đa thức có 1 nghiệm = -1
b) Với a,b,c thuộc Z và f(1), f(0), f(-1) đều chia hết cho 3
CMR: a,b,c đều chia hết cho 3
Cho đa thức f(x) = ax2 + bx + c . Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức đó .
Để x=1 là một nghiệm của f(x)
thì f(1)=a.12+b.1+c=0
=>a+b+c=0
Vậy .........
Cho đa thức
f(x)=ax3+bx3+cx+d
CMR: Nếu a+b+c+d=0 thì đa thức có 1 nghiệm là 1
Ta có : f(1)= a*13+b*13+c*x+d = a+b+c+d=0
Vay neu a+b+c+d =0 thi da thuc co mot nghiem la 1
F(1)=a.13+b.12+c.1+d=a+b+c+d=0 (theo giả thiết)
=> 1 là nghiệm của F(x)
cho đa thức f(x)=ax^2+bx+c
a)nếu biết 14a+2b+3c=0. CMR 3 số f910;f(-2);f(3) có ít nhất một số không âm
b)CMR nếu f(1)=2012; f(-2)=f(3)=2036 thì đa thức f(x) vô nghiệm