Những câu hỏi liên quan
LM
Xem chi tiết
DD
Xem chi tiết
LA
Xem chi tiết
VQ
17 tháng 11 2015 lúc 19:08

p là SNT >3

=>p có dạng 3k+1 và 3k+2 với k khác 0

với p=3k+1 ta có p+8=3k+1+8=3k+9 chia hết cho 3 => là hợp số => loại

với p=3k+2 ta có : p+8=3k+2+8=3k+10 có thể là SNT => chọn

=>p+100=3k+2+100=3k+102 là hợp số

 

Bình luận (0)
NK
Xem chi tiết
LB
22 tháng 10 2016 lúc 20:51

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

Bình luận (0)
BD
22 tháng 10 2016 lúc 20:54

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

Bình luận (0)
NK
Xem chi tiết
VS
22 tháng 10 2016 lúc 20:21

a)

p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Bình luận (0)
BD
22 tháng 10 2016 lúc 20:26

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số 

b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số

c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

a )

* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

nhé !

.........

còn câu b ,c chưa nghĩ ra

Bình luận (0)
NL
8 tháng 3 2019 lúc 21:04

Mình làm phần b hộ cho

vì p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2(k thuộc Z)

Vì p+4 cũng là số nguyên tố nên p#3k+2 vì nếu p=3k+2 thì p+4= 3k+2+4=3k+6 (là hợp số)

=> p=3k+1

Vậy p+8=3k+1+8=3k+9 (là hợp số)

k mình nha, ai k trả lời bên dưới mình sẽ k lại.

Bình luận (0)
NT
Xem chi tiết
RL
24 tháng 10 2015 lúc 21:44

p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3 ;p có dạng:3k+2 hoặc 3k+1

nếu p có dạng 3k+1 thì p+8=(3k+1)+8=3k+9 chia hết cho 3 ,là hợp số

nếu p có dạng 3k+2 khi đó p+100=(3k+2)+100=3k+102 chia hết cho 3=> p+100 là hợp số(vì chia hết cho 3)

Bình luận (0)
H24
24 tháng 10 2015 lúc 21:44

Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.

*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố

*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)

=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số 

=> p + 100 là hợp số. 

Bình luận (0)
ND
14 tháng 12 2016 lúc 20:45

tao chắc chắn chắc chắn ..... là tao không biết

Bình luận (0)
KC
Xem chi tiết
H24
Xem chi tiết
TG
Xem chi tiết