Những câu hỏi liên quan
LD
Xem chi tiết
HQ
30 tháng 11 2014 lúc 20:48

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$

Bình luận (0)
DT
28 tháng 2 2015 lúc 20:25

dễ ợt nhưng éo biết làm thông cảm nha

 

Bình luận (0)
PT
15 tháng 5 2015 lúc 21:23

ban Dang Ha Trang an noi gi ki vay 

 

Bình luận (0)
PA
Xem chi tiết
PN
Xem chi tiết
LD
Xem chi tiết
NM
Xem chi tiết
KS
20 tháng 7 2018 lúc 21:17

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)

\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)

\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)

Ta có:

 \(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)

\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)

\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )

\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)

Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\) 

Tham khảo nhé~

Bình luận (0)
HK
20 tháng 7 2018 lúc 21:18

Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4

Bình luận (0)
DN
20 tháng 7 2018 lúc 21:33

Ta có:

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}=4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}\)

\(\frac{1}{2013}>\frac{1}{2014},\frac{1}{2012}>\frac{1}{2014},\frac{1}{2011}>\frac{1}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}>\frac{3}{2014}\)

=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>0\)

=>\(4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>4\)

Bình luận (0)
NB
Xem chi tiết
MU
3 tháng 9 2015 lúc 22:14

\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)

\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)

\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)

 

còn lại bó tay @@ 

Bình luận (0)
MU
3 tháng 9 2015 lúc 22:08

\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)

và 

\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)

 

Bình luận (0)
TC
Xem chi tiết
TA
18 tháng 6 2018 lúc 8:53

ta có 3=1+1+1

vì 2011/2012<1; 2012/2013<1; 2013/2014<1 nên 2011/2012+2012/2013+2013/2014<1+1+1=3

Bình luận (0)
NM
Xem chi tiết
HH
12 tháng 8 2018 lúc 10:25

\(\frac{2011}{2010}\times\frac{2012}{2011}\times\frac{2013}{2012}\times\frac{2014}{2013}\times\frac{1005}{1007}\)

\(=\frac{2014}{2010}\times\frac{1005}{1007}\)

\(=\frac{2\times1007\times1005}{2\times1005\times1007}\)

\(=1\)

Bình luận (0)
H24
12 tháng 8 2018 lúc 10:28

\(\frac{2011}{2010}\cdot\frac{2012}{2011}\cdot\frac{2013}{2012}\cdot\frac{2014}{2013}\cdot\frac{2010}{2014}\)

\(=\frac{2010\cdot2011\cdot2012\cdot2013\cdot2014}{2010\cdot2011\cdot2012\cdot2013\cdot2014}\)

= 1

Bình luận (0)
D2
12 tháng 8 2018 lúc 10:28

\(\frac{2011}{2010}.\frac{2012}{2011}.\frac{2013}{2012}.\frac{2014}{2013}.\frac{1005}{1007}=\frac{2014}{2010}.\frac{1005}{1007}\)

\(\frac{2014}{2010}.\frac{1005}{1007}=\frac{1007}{1005}.\frac{1005}{1007}=1\)

Bình luận (0)
KH
Xem chi tiết
H24
9 tháng 8 2015 lúc 17:51

\(\frac{2009}{2010}

Bình luận (0)