A=(2011/2012)+(2012/2013)+(2013/2014)
B=(2011+2012+2013)/(2012+2013+2014)
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
dễ ợt nhưng éo biết làm thông cảm nha
ban Dang Ha Trang an noi gi ki vay
cho A=2011+2012/2013+2014 VÀ B=2011/2012 + 2012/2013
SO SÁNH A VÀ B
tìm x biết (x+2014)/2011 + (x+2013)/2012 = (x+2012)/2013 + (x+2011)/2014
So sánh:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)và\(\frac{2010}{2008}+\frac{2011}{2013}+\frac{2012}{2014}+\frac{2013}{2015}\)
so sánh\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}vs4\)
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)
\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)
\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)
Ta có:
\(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)
\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)
\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )
\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Tham khảo nhé~
Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4
Ta có:
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}=4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}\)
Vì\(\frac{1}{2013}>\frac{1}{2014},\frac{1}{2012}>\frac{1}{2014},\frac{1}{2011}>\frac{1}{2014}\)
=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}>\frac{3}{2014}\)
=>\(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>0\)
=>\(4+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{3}{2014}>4\)
So sánh:
A= 2010/2011 - 2011/2012 + 2012/2013 - 2013/ 2014 và B= 1/ 2010.2011 - 1/ 2012.2013
\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)
\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)
\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)
còn lại bó tay @@
\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
và
\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
so sánh 2011\2012+2012\2013+2013\2014 với3
ta có 3=1+1+1
vì 2011/2012<1; 2012/2013<1; 2013/2014<1 nên 2011/2012+2012/2013+2013/2014<1+1+1=3
2011/2010 *2012/2011 * 2013/2012 * 2014/2013 * 1005/1007
dấu * là dấu nhân
\(\frac{2011}{2010}\times\frac{2012}{2011}\times\frac{2013}{2012}\times\frac{2014}{2013}\times\frac{1005}{1007}\)
\(=\frac{2014}{2010}\times\frac{1005}{1007}\)
\(=\frac{2\times1007\times1005}{2\times1005\times1007}\)
\(=1\)
\(\frac{2011}{2010}\cdot\frac{2012}{2011}\cdot\frac{2013}{2012}\cdot\frac{2014}{2013}\cdot\frac{2010}{2014}\)
\(=\frac{2010\cdot2011\cdot2012\cdot2013\cdot2014}{2010\cdot2011\cdot2012\cdot2013\cdot2014}\)
= 1
\(\frac{2011}{2010}.\frac{2012}{2011}.\frac{2013}{2012}.\frac{2014}{2013}.\frac{1005}{1007}=\frac{2014}{2010}.\frac{1005}{1007}\)
\(\frac{2014}{2010}.\frac{1005}{1007}=\frac{1007}{1005}.\frac{1005}{1007}=1\)
sắp xếp từ bé đến lớn 2009/2010 ; 2010/2011; 2011/2012; 2012/2013; 2013/2014