Những câu hỏi liên quan
NT
Xem chi tiết
LD
22 tháng 7 2021 lúc 8:28

4a2 + 9b2 - 20a + 6b + 26 = 0 <=> ( 2a - 5 )2 + ( 3b + 1 )2 = 0 <=> a = 5/2 ; b = -1/3

5a2 + b2 - 2a + 4ab + 1 = 0 <=> ( 2a + b )2 + ( a - 1 )2 = 0 <=> a = 1 ; b = -2

Bình luận (0)
 Khách vãng lai đã xóa
XO
22 tháng 7 2021 lúc 8:29

1) Ta có 4a2 + 9b2 - 20a + 6b + 26 = 0

<=> (4a2 - 20a + 25) + (9b2 + 6b + 1) = 0

<=> (2a - 5)2 + (3b + 1)2 = 0

<=> \(\hept{\begin{cases}2a-5=0\\3b+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=-\frac{1}{3}\end{cases}}\)

Vậy a = 5/2 ; b = -1/3

2) Ta có 5a2 + b2 - 2a + 4ab + 1 = 0

<=> (4a2 + 4ab + b2) + (a2 - 2a + 1) = 0

<=> (2a + b)2 + (a - 1)2 = 0

<=> \(\hept{\begin{cases}2a+b=0\\a-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-2\\a=1\end{cases}}\)

Vậy b = -2 ;  a = 1

Bình luận (0)
 Khách vãng lai đã xóa
QA
22 tháng 7 2021 lúc 10:39

Trả lời:

1) 4a+ 9b- 20a + 6b + 26 = 0

<=> 4a+ 9b- 20a + 6b + 25 + 1 = 0

<=> ( 4a2 - 20a + 25 ) + ( 9b2 + 6b + 1 ) = 0

<=> ( 2a - 5 )2 + ( 3b + 1 )2 = 0

Mà ( 2a - 5 )2 \(\ge0\forall a\); ( 3b + 1 )2 \(\ge0\forall b\)

=> ( 2a - 5 )2 = 0 và ( 3b + 1 )2 = 0 

=> 2a - 5 = 0 và 3b + 1 = 0

<=> a = 5/2 và b = - 1/3

Vậy a = 5/2; b = - 1/3 là nghiệm của pt.

2) 5a+ b- 2a + 4ab + 1 = 0

<=> a2 + 4a2 + b- 2a + 4ab + 1 = 0 

<=> ( 4a2 + 4ab + b2 ) + ( a2 - 2a + 1 ) = 0

<=> ( 2a + b )2 + ( a - 1 )2 = 0

Mà ( 2a + b )2 \(\ge0\forall a;b\); ( a - 1 )2 \(\ge0\forall a\)

=> ( 2a + b )2 = 0 và ( a - 1 )2 = 0

=> 2a + b = 0 và a - 1 = 0

<=> b = - 2 và a = 1

Vậy a = 1; b = - 2 là nghiệm của pt.

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
H24
4 tháng 1 2020 lúc 16:32

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
Bình luận (0)
 Khách vãng lai đã xóa
H24
4 tháng 1 2020 lúc 16:32

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
DL
23 tháng 12 2022 lúc 18:12

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

Bình luận (0)
NC
Xem chi tiết
NT
27 tháng 3 2016 lúc 22:11

Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4

=>0=<a+b=<1

Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013

=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015

=>Amin=2015 khi a=b=1/2

Bình luận (0)
HH
Xem chi tiết
HH
5 tháng 4 2018 lúc 6:00

Trả lời đi mn

Bình luận (0)
TQ
Xem chi tiết
TN
13 tháng 5 2018 lúc 22:44

vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống

Bình luận (0)
TQ
14 tháng 5 2018 lúc 18:08

là thế nào bạn ơi

Bình luận (0)
BB
Xem chi tiết
TH
11 tháng 3 2021 lúc 21:32

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)

\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).

Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).

Bình luận (0)
AS
Xem chi tiết
LD
Xem chi tiết
EC
3 tháng 2 2021 lúc 5:39

Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)

CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)

=> P \(\ge a+b-2ab=4ab-2ab=2ab\)

Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)

=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)

<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)

=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b = 1/2

Vậy MinP = 1/2 <=> a = b= 1/2

Bình luận (0)
 Khách vãng lai đã xóa
KN
3 tháng 2 2021 lúc 11:03

Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)

Mà \(a+b>0\Rightarrow a+b\ge1\)

Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = 1/2

Bình luận (0)
 Khách vãng lai đã xóa