A= (1+1/3)(1+1/8)(1+1/15)...(1+1/9999). tìm A
Cho A= (1+ 1/3) . (1+1/8) . (1+1/15)...(1+1/9999)
So sánh A với 2
Nhanh mk tk nha, cám ơn
ta có:
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)....\left(1+\frac{1}{9999}\right)\)
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{10000}{9999}=\frac{2^2}{1.3}.\frac{3^2}{2.4}....\frac{100^2}{99.101}\)
\(A=\frac{\left(2.3.4.5....100\right)}{1.2.3.4....99}.\frac{\left(2.3.4...100\right)}{3.4.5..101}\)
\(A=\frac{100}{1}.\frac{2}{101}=\frac{200}{101}< \frac{202}{101}=2\)
\(\Rightarrow A< 2\)
A = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
B = 3/4 . 8/9 .15/16. ... 9999/10000
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3A=3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(A=\left(\frac{1}{2}-\frac{1}{20}\right)\div3=\frac{9}{20}\div3=\frac{9}{20.3}=\frac{3}{20}\)
Vậy ................
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{9999}{10000}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{99.101}{100.100}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right).\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right).\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(B=\frac{1\cdot2\cdot3\cdot..\cdot99}{2\cdot3\cdot4\cdot..\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)
\(B=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}\)
vậy......
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
A=1/3.(3/2.5+3/5.8+3/8.11+3/11.14+3/14.17+3/17.20)
A=1/3.(1/2-1/20)
=3/20
B=1.3/2.2+2.4/3.3+3.5/4.4+...+99.101/100.100
B=(1.2.3...99).(3.4.5...101)/(2.3.4...100).(2.3.4...100)
B=\(\frac{1.2....99}{2.3...100}\).\(\frac{3.4...101}{2.3...100}\)
B=1/100.101/2=101/200
A = 1/15 + 1/35 + 1/63 + 1/99 + ...... + 1/9999. Tìm số A
(1+1/3)×(1+1/8)×(1+1/15)×...×(1+1/9999)
(1+1/3)*(1+1/8)*(1+1/15)*...*(1+1/9999)
Tìm A biết:A=1/15+1/35+1/63+1/99+........................+1/9999
: S = 1/3 + 1/15 + 1/35 + 1/63 +...+ 1/9999
S = 1/(1.3) + 1/(3.5) + 1/(5.7) + 1/(7.9) +...+1/(99.101)
ta có:
1/(1.3) = (1/2)(1 - 1/3)
1/(3.5) = (1/2)(1/3 - 1/5)
1/(5.7) = (1/2)(1/5 - 1/7)
..............
1/(97.99) = (1/2)(1/97 - 1/99)
1/(99.101) = (1/2)(1/99 - 1/101)
cộng lại:
S = (1/2)(1 - 1/101) = 100/202 = 50/101
-----------
áp dụng : 1/[(2k-1)(2k+1)] = (1/2)[1/(2k-1) - 1/(2k+1)] dấu cộng hay trừ thì bạn vận dụng
1/3 * 1/8 * 1/15 * .................*1/9999 = ?
tính
a; A = 3/4 * 8/9 * 15/16 * ..............* 9999/10000
b; B = {1 - 1/21 } * { 1 - 1/28 } * {1 - 1/36 } * .......................*{ 1 - 1326}
c; C = { 1 + 1/1*3 } * { 1 + 1 / 2*4 } * { 1 + 1/3*5} * ...........................* { 1+ 1/99*101}
cau a bang 101/200, k cho minh nha'
Tính nhanh: A = 1/15 + 1/35 + 1/63 + 1/99 +...+ 1/9999
Tìm số A?