Những câu hỏi liên quan
HT
Xem chi tiết
NH
7 tháng 8 2017 lúc 21:06

ta có:

\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)....\left(1+\frac{1}{9999}\right)\)

\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{10000}{9999}=\frac{2^2}{1.3}.\frac{3^2}{2.4}....\frac{100^2}{99.101}\)

\(A=\frac{\left(2.3.4.5....100\right)}{1.2.3.4....99}.\frac{\left(2.3.4...100\right)}{3.4.5..101}\)

\(A=\frac{100}{1}.\frac{2}{101}=\frac{200}{101}< \frac{202}{101}=2\)

\(\Rightarrow A< 2\)

Bình luận (0)
NH
7 tháng 8 2017 lúc 21:07

nếu đúng k giúp mình nhé

Bình luận (0)
HT
7 tháng 8 2017 lúc 21:10

Hi cám ơn bn nha

Bình luận (0)
H24
Xem chi tiết
MA
16 tháng 5 2018 lúc 16:16

\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)

\(3A=3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)

\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)

\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)

\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)

\(3A=\frac{1}{2}-\frac{1}{20}\)

\(A=\left(\frac{1}{2}-\frac{1}{20}\right)\div3=\frac{9}{20}\div3=\frac{9}{20.3}=\frac{3}{20}\)

Vậy ................

\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{9999}{10000}\)

\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{99.101}{100.100}\)

\(B=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right).\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right).\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)

\(B=\frac{1\cdot2\cdot3\cdot..\cdot99}{2\cdot3\cdot4\cdot..\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)

\(B=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}\)

vậy......

Bình luận (0)
H24
16 tháng 5 2018 lúc 16:55

A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20

A=1/3.(3/2.5+3/5.8+3/8.11+3/11.14+3/14.17+3/17.20)

A=1/3.(1/2-1/20)

=3/20

B=1.3/2.2+2.4/3.3+3.5/4.4+...+99.101/100.100

B=(1.2.3...99).(3.4.5...101)/(2.3.4...100).(2.3.4...100)

B=\(\frac{1.2....99}{2.3...100}\).\(\frac{3.4...101}{2.3...100}\)

B=1/100.101/2=101/200

Bình luận (0)
TP
Xem chi tiết
BT
17 tháng 1 2016 lúc 9:26

tích đi giải cho

 

Bình luận (0)
QH
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
DA
6 tháng 1 2017 lúc 17:46

: S = 1/3 + 1/15 + 1/35 + 1/63 +...+ 1/9999 
S = 1/(1.3) + 1/(3.5) + 1/(5.7) + 1/(7.9) +...+1/(99.101) 
ta có: 
1/(1.3) = (1/2)(1 - 1/3) 
1/(3.5) = (1/2)(1/3 - 1/5) 
1/(5.7) = (1/2)(1/5 - 1/7) 
.............. 
1/(97.99) = (1/2)(1/97 - 1/99) 
1/(99.101) = (1/2)(1/99 - 1/101) 
cộng lại: 
S = (1/2)(1 - 1/101) = 100/202 = 50/101 
----------- 
áp dụng : 1/[(2k-1)(2k+1)] = (1/2)[1/(2k-1) - 1/(2k+1)] dấu cộng hay trừ thì bạn vận dụng

Bình luận (0)
DH
Xem chi tiết
CC
Xem chi tiết
NT
18 tháng 3 2017 lúc 21:16

biết mỗi câu a

Bình luận (0)
CC
18 tháng 3 2017 lúc 21:20

ukm thế cx dc

Bình luận (0)
HT
18 tháng 3 2017 lúc 21:26

cau a bang 101/200, k cho minh nha'

Bình luận (0)
NN
Xem chi tiết