Những câu hỏi liên quan
DP
Xem chi tiết
KF
12 tháng 5 2015 lúc 9:38

=\(3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3\left(\frac{4}{80}-\frac{1}{80}\right)\)

\(=3.\frac{3}{80}\)

\(=\frac{9}{80}\)

Bình luận (0)
KT
12 tháng 5 2015 lúc 9:39

Katherine Lilly Filbert đúng rồi

Bình luận (0)
NH
9 tháng 3 2024 lúc 15:50

1/3=3/20*23+3/23*26+...+3/77+80

1/3=1/20-1/23+1/23-1/26+...+1/77-1/80

1/3=1/20-1/80

1/3=3/80

-> 3/3=3/80*3

->9/80

Vì 9/80<1 nên: => 3^2/20*23+3^2/23*26+...+3^2/77*80

 

Bình luận (0)
NC
Xem chi tiết
LT
8 tháng 5 2017 lúc 9:24

Ta có
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(A=3^2\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(A=3^2\cdot\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3\cdot\frac{3}{80}=\frac{9}{80}< 1\left(9< 80\right)\)

Bình luận (0)
NP
Xem chi tiết
TT
3 tháng 5 2016 lúc 13:56

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}<\frac{1}{8}\)

\(=3\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3.\frac{3}{80}=\frac{9}{80}\)

\(\Rightarrow\frac{9}{80}=\frac{1}{8}\)

Bình luận (0)
VL
Xem chi tiết
TC
4 tháng 5 2016 lúc 15:27

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}\)

=\(\frac{3.3}{20.23}+\frac{3.3}{23.26}+\frac{3.3}{26.29}+...+\frac{3.3}{77.80}\)

=\(\frac{3}{20}-\frac{3}{23}+\frac{3}{23}-\frac{3}{26}+\frac{3}{26}-\frac{3}{29}+....+\frac{3}{77}-\frac{3}{80}\)

=\(\frac{3}{20}-\frac{3}{80}\)

=\(\frac{9}{80}\)

Bình luận (0)
YT
4 tháng 5 2016 lúc 15:43

Ta có:

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}=3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)=3.\left(\frac{1}{20}-\frac{1}{80}\right)=3.\frac{3}{80}=\frac{9}{80}\)

Bình luận (1)
TC
4 tháng 5 2016 lúc 15:47

Giống kết quả của mk thôi

 

Bình luận (0)
VA
Xem chi tiết
ZZ
23 tháng 4 2019 lúc 21:46

\(3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+....+\frac{3}{77\cdot80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{3}{20}-\frac{3}{80}\)

\(< 1\)

Bình luận (0)
TN
Xem chi tiết
NT
6 tháng 5 2019 lúc 22:53

Đặt A=\(\frac{1}{20.23}+\frac{1}{23.26}+....+\frac{1}{77.80}\)

=>A=\(\frac{1}{3}\).(\(\frac{3}{20.23}+\frac{3}{23.26}+....+\frac{3}{77.80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{80}\))

=>A=\(\frac{1}{3}.\frac{3}{80}\)

=>A=\(\frac{1}{80}\)

Do \(\frac{1}{80}\)<\(\frac{1}{9}\)

Nên \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \frac{1}{9}\)

Bình luận (1)
TN
6 tháng 5 2019 lúc 22:50

ko bt

Bình luận (0)
TN
6 tháng 5 2019 lúc 22:50

giúp mik nha đng cần gấp

Bình luận (0)
NH
Xem chi tiết
ME
Xem chi tiết
TN
Xem chi tiết
LC
6 tháng 5 2019 lúc 23:01

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

Bình luận (0)
EC
6 tháng 5 2019 lúc 23:02

Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(\frac{1}{3.}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+....+\frac{1}{77}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)

Bình luận (0)