Cho A=\(\frac{79}{1999}+\frac{191}{1998}+\frac{947}{1997}+\frac{673}{1998}+\frac{110}{1999}\)
cho A=\(\frac{79}{1999}+\frac{191}{1998}+\frac{947}{1997}+\frac{673}{1998}+\frac{110}{1999}\)
so sánh A với 1
cho A= \(\frac{79}{1999}+\frac{191}{1998}+\frac{974}{1997}+\frac{673}{1998}+\frac{110}{1999}\)
hãy so sánh A với 1
Cho A=79/1999+191/1998+947/1997+673/1998+110/1999
tính A=\(\frac{79}{1999}\)+\(\frac{191}{1998}\)+\(\frac{947}{1997}\)+\(\frac{6733}{1998}\)+\(\frac{110}{1999}\)???
=4,034224056 mình cũng ko chắc nữa nhưng tịk giúp mình nha
a) A= 79/1999 + 191/1998 + 947/1997 + 673/1998 + 110/1999.
Hãy so sánh A với 1
b) tính:
M= 1 + 1/2 + 1/2^2 + .......+ 1/2^99 + 1/2^100 + 1/2^100.
Tính
A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+......+\frac{1}{1999}}\)
Ai nhanh và đúng mình tick cho
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)
\(=\frac{1}{2000}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}}\)
\(E=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+..+\frac{1}{1999}}\)
Ở mẫu số, bạn tách 1999/1 thaanhf 1999 số 1, sau đó nhóm với các số hạng khác, kết quả là mẫu gấp 2000 laf tử
Vậy E=1/2000
P= \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}}\)
Án vào đây
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath