Những câu hỏi liên quan
BB
Xem chi tiết
H24
23 tháng 1 2020 lúc 21:34

Giả sử: \(\frac{x-17}{x-9}=\frac{a^2}{b^2}\left(a,b\in N,b\ne0\right)\)

Xét \(a=0\Rightarrow x=17\)

Xét \(a\ne0\)

Giả sử: \(\left(a,b\right)=1\)

\(\Rightarrow\hept{\begin{cases}x-17=a^2k\\x-9=b^2k\end{cases}\Rightarrow k\left(b-a\right)\left(a+b\right)=8}\)

Đến đây bạn làm tiếp nhé!

Đáp số: \(x=0;8;17;18\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
ST
Xem chi tiết
NQ
Xem chi tiết
CG
Xem chi tiết
OO
7 tháng 2 2016 lúc 13:18

 "tìm số hữu tỷ x" nghĩa là "tìm một số hữu tỷ x nào đó" ♦ hay "tìm TẤT CẢ các số hữu tỷ x" ♥? 
Nếu là ♦ thì đọc tiếp, lý do tôi nói sau. Trước tiên lý thuyết 
---------- 
Số chính phương chẵn là bình phương của số chẵn nên có dạng 4k. Số chính phương lẻ có dạng 4k + 1: (2n + 1)² = 4n(n + 1) + 1 ♂ 
Từ ♂ => số chính phương lẻ có dạng 8k + 1 do 1 trong 2 số n vả (n + 1) chẵn. 
Bình phương của số chia hết cho 3 thì chia hết cho 3. Bình phương của số không chia hết cho 3 thì chia cho 3 dư 1: (3n +- 1)² = 3(3n² +- 2n) + 1 
-------- 
Ta tìm số hữu tỷ x = n / m với (n, m) = 1, tức dưới dạng phân số tối giản 
=> x² - 5 = (n² - 5m²) / m² = (k / l)², với (k, l) = 1 
=> (n² - 5m²) * l² = m² * k² 
Nếu n² - 5m² = 1 thì dĩ nhiên là số chính phương. Nếu n² - 5m² > 1 => mỗi ước nguyên tố p của n² - 5m² trong khai triển n² - 5m² thành tích các thừa số nguyên tố phải được nâng lên lũy thừa chẵn vì ngược lại thì VT chứa p với lũy thừa lẻ trong khi VP nếu có ước nguyên tố p thì nó được nâng lên lũy thừa chẵn nên không thể có đẳng thức. Vậy n² - 5m² là số chính phương. Tương tự n² + 5m² là số chính phương. 
n và m không thể cùng chẵn vì phân số là tối giản. Cũng không thể cùng lẻ vì lúc đó n² + 5m² = 4m² + n² + m² là số có dạng 4k + 2 nên không thể là số chính phương. Vậy n và m không cùng chẵn lẻ. n không chẵn vì lúc đó m lẻ và n² - 5m² = n² - 8m² + 3m² có dạng 4k + 3. Vậy n lẻ và m chẵn. Nếu m không chia hết cho 4 tức có dạng 4k + 2 thì 5m² có dạng 8k + 4 và n² có dạng 8k + 1 nên số lẻ n² + 5m² có dạng 8k + 5 nên không thể là số chính phương. Vậy m chia hết cho 4 
n và m tất nhiên không cùng chia hết cho 3 vì phân số tối giản. Nếu n chia hết cho 3 thì m không chia hết cho 3 và số n² + 5m² = n² + 3m² + 2m² chia cho 3 dư 2 nên không thể là số chính phương. Vậy m chia hết cho 3 và n không chia hết cho 3. Do (3, 4) = 1 => m chia hết cho 12 = 3*4 => m = 12*p, với p tự nhiên ≥ 1 
Với p = 1 => m = 12 => n² - 5*12² = n² - 720 ≥ 0 => n ≥ 27 
=> n = 29, 31, 35, 37, 41, ... (các số lẻ ≥ 27 không chia hết cho 3) 
Ta loại n = 35 vì lúc đó n² - 5m² chia hết cho 5 nhưng không chia hết cho 25 do m không chia hết cho 5 nên không thể là số chính phương. Thử 4 số còn lại ta thấy n = 41 thỏa mãn: 
41² - 5*12² = 31², 41² + 5*12² = 49² 
(41 / 12)² - 5 = (31 / 12)², (41 / 12)² + 5 = (49 / 12)² tức x = 41 / 12 thỏa mãn 

Do không cm được là phân số tối giản 41 / 12 là số hữu tỷ duy nhất thỏa mãn mà cũng không cm được là có nhiều phân số tối giản khác nhau thỏa mãn (do không có ý tưởng) nên đây là lý do tôi đã nêu.

Bình luận (0)
HP
7 tháng 2 2016 lúc 13:11

day dau phai la lop 1

Bình luận (0)
CG
7 tháng 2 2016 lúc 13:18

Đại thôi bạn tại lớp 1 nhiều người xem nên mong giải giùm!

Bình luận (0)
LK
Xem chi tiết
SF
25 tháng 6 2017 lúc 10:17

                                                     

tìm số hữu tỷ x" nghĩa là "tìm một số hữu tỷ x nào đó" hay "tìm TẤT CẢ các số hữu tỷ x"  
Nếu là  thì đọc tiếp, lý do tôi nói sau. Trước tiên lý thuyết 
---------- 
Số chính phương chẵn là bình phương của số chẵn nên có dạng 4k. Số chính phương lẻ có dạng 4k + 1: (2n + 1)² = 4n(n + 1) + 1  
Từ  => số chính phương lẻ có dạng 8k + 1 do 1 trong 2 số n vả (n + 1) chẵn. 
Bình phương của số chia hết cho 3 thì chia hết cho 3. Bình phương của số không chia hết cho 3 thì chia cho 3 dư 1: (3n +- 1)² = 3(3n² +- 2n) + 1 
-------- 
Ta tìm số hữu tỷ x = n / m với (n, m) = 1, tức dưới dạng phân số tối giản 
=> x² - 5 = (n² - 5m²) / m² = (k / l)², với (k, l) = 1 
=> (n² - 5m²) * l² = m² * k² 
Nếu n² - 5m² = 1 thì dĩ nhiên là số chính phương. Nếu n² - 5m² > 1 => mỗi ước nguyên tố p của n² - 5m² trong khai triển n² - 5m² thành tích các thừa số nguyên tố phải được nâng lên lũy thừa chẵn vì ngược lại thì VT chứa p với lũy thừa lẻ trong khi VP nếu có ước nguyên tố p thì nó được nâng lên lũy thừa chẵn nên không thể có đẳng thức. Vậy n² - 5m² là số chính phương. Tương tự n² + 5m² là số chính phương. 
n và m không thể cùng chẵn vì phân số là tối giản. Cũng không thể cùng lẻ vì lúc đó n² + 5m² = 4m² + n² + m² là số có dạng 4k + 2 nên không thể là số chính phương. Vậy n và m không cùng chẵn lẻ. n không chẵn vì lúc đó m lẻ và n² - 5m² = n² - 8m² + 3m² có dạng 4k + 3. Vậy n lẻ và m chẵn. Nếu m không chia hết cho 4 tức có dạng 4k + 2 thì 5m² có dạng 8k + 4 và n² có dạng 8k + 1 nên số lẻ n² + 5m² có dạng 8k + 5 nên không thể là số chính phương. Vậy m chia hết cho 4 
n và m tất nhiên không cùng chia hết cho 3 vì phân số tối giản. Nếu n chia hết cho 3 thì m không chia hết cho 3 và số n² + 5m² = n² + 3m² + 2m² chia cho 3 dư 2 nên không thể là số chính phương. Vậy m chia hết cho 3 và n không chia hết cho 3. Do (3, 4) = 1 => m chia hết cho 12 = 3*4 => m = 12*p, với p tự nhiên ≥ 1 
Với p = 1 => m = 12 => n² - 5*12² = n² - 720 ≥ 0 => n ≥ 27 
=> n = 29, 31, 35, 37, 41, ... (các số lẻ ≥ 27 không chia hết cho 3) 
Ta loại n = 35 vì lúc đó n² - 5m² chia hết cho 5 nhưng không chia hết cho 25 do m không chia hết cho 5 nên không thể là số chính phương. Thử 4 số còn lại ta thấy n = 41 thỏa mãn: 
41² - 5*12² = 31², 41² + 5*12² = 49² 
(41 / 12)² - 5 = (31 / 12)², (41 / 12)² + 5 = (49 / 12)² tức x = 41 / 12 thỏa mãn 

Do không cm được là phân số tối giản 41 / 12 là số hữu tỷ duy nhất thỏa mãn mà cũng không cm được là có nhiều phân số tối giản khác nhau thỏa mãn 
Bình luận (0)
OM
25 tháng 6 2017 lúc 10:20

  "tìm số hữu tỷ x" nghĩa là "tìm một số hữu tỷ x nào đó" ♦ hay "tìm TẤT CẢ các số hữu tỷ x" ♥? 
Nếu là ♦ thì đọc tiếp, lý do tôi nói sau. Trước tiên lý thuyết 
---------- 
Số chính phương chẵn là bình phương của số chẵn nên có dạng 4k. Số chính phương lẻ có dạng 4k + 1: (2n + 1)² = 4n(n + 1) + 1 ♂ 
Từ ♂ => số chính phương lẻ có dạng 8k + 1 do 1 trong 2 số n vả (n + 1) chẵn. 
Bình phương của số chia hết cho 3 thì chia hết cho 3. Bình phương của số không chia hết cho 3 thì chia cho 3 dư 1: (3n +- 1)² = 3(3n² +- 2n) + 1 
-------- 
Ta tìm số hữu tỷ x = n / m với (n, m) = 1, tức dưới dạng phân số tối giản 
=> x² - 5 = (n² - 5m²) / m² = (k / l)², với (k, l) = 1 
=> (n² - 5m²) * l² = m² * k² 
Nếu n² - 5m² = 1 thì dĩ nhiên là số chính phương. Nếu n² - 5m² > 1 => mỗi ước nguyên tố p của n² - 5m² trong khai triển n² - 5m² thành tích các thừa số nguyên tố phải được nâng lên lũy thừa chẵn vì ngược lại thì VT chứa p với lũy thừa lẻ trong khi VP nếu có ước nguyên tố p thì nó được nâng lên lũy thừa chẵn nên không thể có đẳng thức. Vậy n² - 5m² là số chính phương. Tương tự n² + 5m² là số chính phương. 
n và m không thể cùng chẵn vì phân số là tối giản. Cũng không thể cùng lẻ vì lúc đó n² + 5m² = 4m² + n² + m² là số có dạng 4k + 2 nên không thể là số chính phương. Vậy n và m không cùng chẵn lẻ. n không chẵn vì lúc đó m lẻ và n² - 5m² = n² - 8m² + 3m² có dạng 4k + 3. Vậy n lẻ và m chẵn. Nếu m không chia hết cho 4 tức có dạng 4k + 2 thì 5m² có dạng 8k + 4 và n² có dạng 8k + 1 nên số lẻ n² + 5m² có dạng 8k + 5 nên không thể là số chính phương. Vậy m chia hết cho 4 
n và m tất nhiên không cùng chia hết cho 3 vì phân số tối giản. Nếu n chia hết cho 3 thì m không chia hết cho 3 và số n² + 5m² = n² + 3m² + 2m² chia cho 3 dư 2 nên không thể là số chính phương. Vậy m chia hết cho 3 và n không chia hết cho 3. Do (3, 4) = 1 => m chia hết cho 12 = 3*4 => m = 12*p, với p tự nhiên ≥ 1 
Với p = 1 => m = 12 => n² - 5*12² = n² - 720 ≥ 0 => n ≥ 27 
=> n = 29, 31, 35, 37, 41, ... (các số lẻ ≥ 27 không chia hết cho 3) 
Ta loại n = 35 vì lúc đó n² - 5m² chia hết cho 5 nhưng không chia hết cho 25 do m không chia hết cho 5 nên không thể là số chính phương. Thử 4 số còn lại ta thấy n = 41 thỏa mãn: 
41² - 5*12² = 31², 41² + 5*12² = 49² 
(41 / 12)² - 5 = (31 / 12)², (41 / 12)² + 5 = (49 / 12)² tức x = 41 / 12 thỏa mãn 

Do không cm được là phân số tối giản 41 / 12 là số hữu tỷ duy nhất thỏa mãn mà cũng không cm được là có nhiều phân số tối giản khác nhau thỏa mãn (do không có ý tưởng) nên đây là lý do tôi đã nêu.

Bình luận (0)
VN
Xem chi tiết
NA
Xem chi tiết
GB
Xem chi tiết
PK
Xem chi tiết