Cho S=1/2 + 1/3 + 1/4 + ......... + 1/63
So sánh S với 2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho S=1/2^2+1/3^2+....+1/100^2 .So sánh S với 3/4
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
ta có
1/3^2 < 1/2*3 ; 1/4^2 < 1/3*4 ; .........; 1/100^2< 1/99*100
suy ra s=1/2^2+1/3^2+....+1/100^2 < 1/2*3 + 1/3*4 +...........+ 1/99*100
S < 1/4 + 1/2 - 1/3 + 1/3 +..........+ 1/99 - 1/100
suy ra S< 1/4 +1/2 - 1/100
hay S < 3/4 -1/100
mà 3/4 -1/100< 3/4
suy ra s<3/4
Cho \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
So sánh S với 1
Ta có
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..............
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)
ĐPcm
Giải:
\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\)
\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\)
\(\Rightarrow S< 1\)
Vậy S < 1.
Cho S=1/5+2/5^2+3/5^3+4/5^4+....+2015/5^2015 . Hãy so sánh S với 1/3
1853567804232223
Cho S=1/2^2+1/3^2+....+1/100^2 .So sánh S với 3/4
Nhan xet:
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
....
\(\frac{1}{100^2}< \frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
Vay:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{99}{202}< \frac{3}{4}\)
Cho S =1/5+2/5 mu 2 +3/5mu 3 +4/5 mu 4+....+2012/5 mu 2012
So sánh S với 1/3
S=1/3+2/3^2+3/3^3+4/3^4+..................+100/3^100. So sánh S với 1/5
Cho S = 1/22 +1/23 1/42 +...+1/92 . So sánh S với 8/9
S< 1/1.2+1/2.3+...+1/8.9=1/1-1/2+1/2-1/3+...+1/8-1/9=1/1-1/9=8/9
vậy S< 8/9
cho S = 1+2+2^2+2^3+2^4+...+2^99
1)tìm 2 chữ số tận cùng của S
2)hãy so sánh S với 5x2^98
3)tìm n thuộc N bt 16^n=S+1
4)hỏi S+1 có là số chính phương ko?vì sao?
hì.Bài này bồi nhể chị.Chị hỏi mà ko ai trả lời hả
Cho S =1/5+2/52+3/53+4/54+.......+2012/52012
So sánh S với 1/3