CMR \(n\inℕ^∗\)thì \(\left(5^{2n+1}+2^{n+4}+2^{n+1}\right)⋮23\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR \(\left(x+1\right)^{2n+1}+x^{n+2}⋮x^2+x+1\forall x\inℕ^∗\)
CM: \(2^{2n}.\left(2^{2n+1}-1\right)-1⋮9\left(n\inℕ^∗\right)\)
So sánh:
a) \(A=\frac{n}{n+1};B=\frac{n+2}{n+3}\left(n\inℕ\right)\)
b) \(A=\frac{n}{n+3};B=\frac{n-1}{n+4}\left(n\inℕ^∗\right)\)
c) \(A=\frac{n}{2n+1};B=\frac{3n+1}{6n+3}\left(n\inℕ\right)\)
Giúp mình nhé gấp lắm ai trả lời đầu tiên mình sẽ tick
a)A=n/n+1=n/n+0/1
B=n+2/n+3=n/n + 2/3
ta có:0<2/3
=>A<B
a) 2n + 3 và 2n + 5 \(\left(n\inℕ\right)\)
b) 2n + 3 và 2n +4 \(\left(n\inℕ\right)\)
CMR:nếu \(1+2^n+4^n\) là số nguyên tố \(\left(n\inℕ^∗\right)\) thì n=3k \(\left(k\inℕ^∗\right)\)
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Cho \(n\inℕ^∗\)CMR
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{\left(n+1\right)}\)
\(\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2-2\left(\frac{1}{n}-\frac{1}{n\left(n+1\right)}-\frac{1}{n+1}\right)}\)
=1+1/n-1/n+1
chúc bn hoc tốt
Cho \(n\inℕ^∗\) CMR
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{\left(n+1\right)}\)
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}=\frac{[\left(n+1\right)^2-n]^2}{n^2\left(n+1\right)^2}\)
\(\Rightarrow\left(n+1\right)^4+n^2=\left(n+1\right)^4-2\left(n+1\right)^2n+n^2\)
\(\Rightarrow0=-2\left(n+1\right)^2n\)
\(\Rightarrow\orbr{\begin{cases}\left(n+1\right)^2=0\\n=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\\n=0\end{cases}}\) mà \(n\inℕ^∗\)
=> n\(\in\varnothing\)
Ui nhầm ! sr bạn nha , tội ẩu ko đọc kĩ đề :(
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24