S = 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20
So sánh S và 1/2
Cho S= 1/11+ 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20
So sánh S với 1/2
Mn giúp mình với
-Ta có: \(\dfrac{1}{2}=\dfrac{10}{20}=\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\) (có 10 số \(\dfrac{1}{20}\)).
Mà \(\dfrac{1}{20}< \dfrac{1}{19};\dfrac{1}{20}< \dfrac{1}{18};...;\dfrac{1}{20}< \dfrac{1}{11}\)
\(\Rightarrow\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}< \dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{11}\)
\(\Rightarrow\dfrac{1}{2}< S\)
Cho S= 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20, so sánh S và 1/2
\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(10 số hạng)
\(=10.\frac{1}{20}=\frac{1}{2}\).
Vậy \(S>\frac{1}{2}\).
Cho S = 1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. Hãy so sánh S và 1/2
ta thấy: 1/11;1/12;1/13;...;1/19;1/20 đều >1/20
=>1/11+1/12+...1/19+1/20>1/20+1/20...+1/20
1/11+1/12+...1/19+1/20>10/20
1/11+1/12+...1/19+1/20>1/2 vậy S>1/2
S = 1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20
tìm S và so sánh S với 1/2
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+...+\frac{1}{20}\)(10 số \(\frac{1}{20}\))
=\(\frac{1}{20}.10=\frac{1}{2}\)
vậy S>1/2
Cho S = 1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20
So sánh S và 1/2
có \(\frac{1}{20}\) bé nhất suy ra
"có 10 số hạng "\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+......+\frac{1}{20}>\frac{1}{20}.10\)
\(VT>\frac{10}{20}=\frac{1}{2}\)
Cho S=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. Hãy so sánh S và 1/2
vì 1/11>1/20
1/12>1/20...
1/13>1/20
nên 1/11+1/12+,,,,+1/20>1/20+1/20+,,,,+1/20=10/20=1/2(rút gọn
10 số 1/20
vậy S>1/2
Cho S =1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20
Hãy so sánh S và 1/2
\(\frac{1}{11}\)> \(\frac{1}{20}\)
\(\frac{1}{12}\)> \(\frac{1}{20}\)
.
.
.
\(\frac{1}{19}\)>\(\frac{1}{20}\)
\(\frac{1}{20}\)= \(\frac{1}{20}\)
=> S = 1/11+1/12+...+1/20>1/20+1/20+1/20+1/20+1/20+1/20+1/20+1/20+1/20+1/20=10*1/20=1/2 (đpcm)
Ta có:
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
.............
\(\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 phân số \(\frac{1}{20}\))
\(\Leftrightarrow\frac{10.1}{20}=\frac{10}{20}=\frac{1}{2}\)
Vì \(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{2}\). Mà \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{2}\)
Cho S=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20.
Hãy so sánh S và 1/2
Số lượng số của S là :
\(\left(20-11\right):1+1=10\)( số )
Ta có :
\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};...;\frac{1}{19}>\frac{1}{20};\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(\Rightarrow S>\frac{1}{20}.10\)
\(\Rightarrow S>\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
Ta có:
1/11 + 1/12 + 1/13 + ....................... + 1/ 20 > 1/20 +1/20 +1/ 20 +1/20 +1/20 +1/20 +1/20 +1/ 20 +1/20 +1/20 = 1/2
=> S > 1/2
Vậy S > 1/2
\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};............;\frac{1}{20}=\frac{1}{20}\) nên cái tổng ấy sẽ > 10 lần 1/20 =1/2
cho S = 1/11+ 1/12+ 1/13 = 1/14= 1/15+ 1/16+ 1/17= 1/18+ 1/19+ 1/20
hãy so sánh S và 1/2