Cmt neu b-2c >hoc bang 2 thi 1 trong 2 pt sau có 2 nghiem
X^2+bx+1=0 và X^2+x+1=0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a+b+c=6. Chứng minh 1 trong 3 pt sau có nghiệm: x^2+ax+1=0 ; x^2+bx+1 = 0 ; x^2+cx+1 = 0
cho a,b,c thỏa mãn \(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)
cmr trong 2 pt sau: x^2+bx+c=0 và x^2+cx+b=0 sẽ có ít nhất 1 pt có nghiệm
cho 3 số a,b,c thỏa mãn a>b>c>0 và a+b+c=12 chứng minh 1 trong 3 pt sau x^2+ax+b=0; x^2+bx+c=0; x^2+cx+a=0 có nghiệm
Cho a+b+c=0. cHỨNG MINH 1 TROG 3 PT SAU CÓ NGHIỆM
X^2+AX+1=0 ; X^2+BX+1=0 ; X^2+CX+1=0
Chứng minh rằng nếu b-2c>=2 thì một trong hai phương trình sau đây có nghiệm :
x^2 + bx +1= 0 ; x^2 + x +c=0
\(\Delta_1=b^2-4;\Delta_2=1-4c;\)
Do đó: \(\Delta_1+\Delta_2=b^2-3c-4c\)
Mặt khác, ta có: \(b-2c\ge2\Leftrightarrow-2c\ge2-b\Leftrightarrow-4c\ge4-2b\Leftrightarrow-3-4c\ge1-2b\)
\(\Leftrightarrow b^2-3-4c\ge b^2-2b+1=\left(b-1\right)^2\ge0\)
Hay \(\Delta_1+\Delta_2\ge0\)
Suy ra ít nhất một trong hai biệt thức \(\Delta_1,\Delta_2\)phải có ít nhất một biệt thức không âm.
Hay một trong hai phương trình đã cho có nghiệm.
CMR với ab>=2(c+d) thì ít nhất 1 trong 2 PT sau có nghiệm x^2+ax+c=0,x^2+bx+d=0
Cho đa thức: f(x)= x^2+bx+c
Cm: neu 1+b+c=0 thi f(x) co 1 nghiem la 1
Cho pt \(ax^2+bx+c=0\) có 2 nghiệm x1,x2 thoả mãn x1=x22.Chứng minh rằng \(b^3+a^2c+ac^2=3abc\)
Công thức nghiệm Vi-et
Ta giải
\(ax2+b3\cdot a2c=0,1\)
Ta có theo Viet: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1.x_2=\frac{c}{a}\end{cases}}\Rightarrow\hept{\begin{cases}x^2_2+x_2=-\frac{b}{a}\\x^3_2=\frac{c}{a}\end{cases}\Rightarrow\frac{x^2_2+x_2}{x_2^3}=-\frac{b}{c}=\frac{x_2+1}{x_2^2}}\)
Lại có \(\frac{b^3+a^2c+ac^2}{abc}=\frac{b^2}{ac}+\frac{a}{b}+\frac{c}{b}=\left(x_2^2+x_2\right)\frac{x_2+1}{x_2^2}-\frac{1}{x_2^2+x_2}-\frac{x_2^2}{x_2+1}\)
\(=\frac{x_2\left(x_2+1\right)^2}{x_2^2}-\frac{1}{x_2^2+x_2}-\frac{x_2^2}{x_2+1}=\frac{\left(x_2+1\right)^2}{x_2}-\frac{1}{x_2\left(x_2+1\right)}-\frac{x_2^2}{x_2+1}\)
\(=\frac{\left(x_2^2+2x_2+1\right)\left(x_2+1\right)-1-x_2^3}{x_2\left(x_2+1\right)}=\frac{x_2^3+3x_2^2+3x_2+1-1-x_2^3}{x_2^2+x_2}\)
\(=\frac{3\left(x_2^2+x_2\right)}{x_2^2+x_2}=3\)
Từ đó suy ra \(b^3+a^2c+ac^2=3abc\left(đpcm\right).\)
1/c+1/b=1/2. chứng minh ít nhất 1 trong hai phương trình sau có nghiệm x^2+bx+c=0 và x^2 +cx+b=0