Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR : (a + 2c).(b+d) = (a+c).(b+2d)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tỉ lệ thức : \(\frac{a}{b}\)= \(\frac{c}{d}\). CMR :
( a + 2c) ( b+d) = ( a+c ) ( b+ 2d )
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\Rightarrow\frac{a+2c}{b+2d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\Rightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR:
a) \(\frac{a}{b}=\frac{a+2c}{b+2d}\)
b) \(\frac{a-b}{b}=\frac{a+c-b-d}{b+d}\)
Giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+2c}{b+2d}\left(đpcm\right)\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\) (1)
\(\frac{a+c-b-d}{b+d}=\frac{bk+dk-b-d}{b+d}=\frac{\left(bk-b\right)+\left(dk-d\right)}{b+d}=\frac{\left[b\left(k-1\right)+d\left(k-1\right)\right]}{b+d}=\frac{k-1.\left(b+d\right)}{b+d}=k-1\) (2)
Từ (1) và (2) suy ra \(\frac{a-b}{b}=\frac{a+c-b-d}{b+d}\left(đpcm\right)\)
Cho tỉ lệ thức : \(\frac{a}{b}\)= \(\frac{c}{d}\). CMR:
( a+2c).(b+d)=(a+c).(b+2d)
Cho tỉ lệ thức :\(\frac{a}{b}=\frac{c}{d}\)
CMR : \(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
a/b = c/d
=> a = bk và c = dk
thay vào ta có :
(bk + 2dk)(b+d) = (bk+dk)(b+2d)
=> k(b+2d)(b+d) = k(b+d)(b+2d)
xong rồi nha
K bt thì k cần phải nói
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Cmr \(\frac{a+4c}{b+4d}=\frac{7a-2c}{7b-2d}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{a^2}{b^2}=\frac{2c^2-ac}{2d^2-bd}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{2c^2}{2d^2}=\frac{a}{b}=\frac{2c^2-ac}{2d^2-bd}\)
Vậy...
Ps : Cái này mk học roy nên chắc v!
mk cũng đang hóng suốt từ sáng câu hỏi này, cảm ơn bn
nhưng cách giải hơi ngắn, thấy sao ý
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
C/m(a+2c)(b+d)=(a+c)(b+2d)
Từ \(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)
\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)(*). Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
VT(*)=\(\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)
VP(*)=\(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2) ta có Đpcm
Vậy thôi nhưng mak ko cần xoắn như cj Thắng
Áp dụng t/c của dãy tỉ số = nhau ta có:
a/b = c/d = 2c/2d = a+c/b+d = a+2c/b+2d
=> (b+d)(a+2c) = (a+c)(b+2d) (đpcm)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng : ( a + 2c )( b + d ) = ( a + c )(b+2d)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).
Có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)
Chúc bạn học tốt!
cho tỉ lệ thức : a/b = c/d . CMR : ( a + 2c )( b + d ) = ( a + c )( b + 2d )
từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)ad = bc \(\Rightarrow\)ad + 2bc = bc + 2ad
\(\Rightarrow\)ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd
\(\Rightarrow\)a ( b + d ) + 2c ( b + d ) = a ( b + 2d ) + c ( b + 2d )
\(\Rightarrow\)( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)\(=\frac{2c}{2d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
\(\Rightarrow\text{(a+2c)(b+d)=(a+c)(b+2d) ( đpcm)}\)
cảm ơn nha