Những câu hỏi liên quan
LL
Xem chi tiết
IN
21 tháng 3 2020 lúc 17:33

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
27 tháng 3 2016 lúc 9:19

vì a+b+c=0 nên a,b,c lớn nhất chỉ có thể bằng ko,nên ab+2bc+3ca chỉ có thể < hoặc bằng 0

Bình luận (0)
PM
Xem chi tiết
Xem chi tiết
H24
25 tháng 2 2019 lúc 15:30

\(ab+2bc+3ac\)

\(=\left(ab+ac\right)+\left(2bc+2ac\right)\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2c^2\le0\)

Bình luận (0)
IN
21 tháng 3 2020 lúc 17:34

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NN
Xem chi tiết
ML
Xem chi tiết
NK
10 tháng 8 2021 lúc 21:13
Một còn vịt
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
MS
31 tháng 3 2018 lúc 21:22

\(ab+2bc+3ac\)

\(=ab+2bc+ac+2ac\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=-a^2-2b^2\le0\) (đúng)

Dấu "=" khi \(x=y=z=0\)

Bình luận (2)
VT
31 tháng 3 2018 lúc 21:39

Ta có:

a+b+c=0

=> a + b = -c

=> (a+b)2 = c2

=> a2 + 2ab + b2 = c2

=> ab = \(\dfrac{c^2-a^2-b^2}{2}\) (1)

Tương tự ta có: a2 + 2ac + c2 = b2

b2 + 2bc + c2 = a2

=> ac = \(\dfrac{b^2-a^2-c^2}{2}\) => 3ac = \(\dfrac{3b^2-3a^2-3c^2}{2}\) (2)

bc = \(\dfrac{a^2-b^2-c^2}{2}\) => 2bc = a2 - b2 - c2 (3)

Thay (1), (2), (3) vào bdt cần ch/m, ta có:

ab + 2bc + 3ac ≤ 0

<=> \(\dfrac{c^2-a^2-b^2}{2}\) + a2 - b2 - c2 + \(\dfrac{3b^2-3a^2-3c^2}{2}\)

<=> c2 - a2 - b2 + 2a2 - 2b2 - 2c2 + 3b2 - 3a2 - 3c2 ≤ 0

<=> -2a2 -4c2 ≤ 0

<=> -2(a2 + 2c2) ≤ 0 (Bdt đúng với mọi a, c)

Dau "=" xay ra khi a2 + 2c2 = 0

<=> a = c = b = 0.

Bình luận (0)
NH
Xem chi tiết