Những câu hỏi liên quan
TB
Xem chi tiết
AN
9 tháng 10 2016 lúc 8:57

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) \(\ge\) 4

<=> y2 >= 2y2 - 4 

<=> y<= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

Bình luận (0)
BN
21 tháng 9 2018 lúc 16:00

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) ≥ 4

<=> y2 >= 2y2 - 4 

<=> y2 <= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

Bình luận (0)
HK
Xem chi tiết
TG
1 tháng 9 2017 lúc 11:44

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Bình luận (0)
RR
Xem chi tiết
SL
7 tháng 1 2018 lúc 10:15

2)

Tổng của 2 số là 2009

=> Trong 2 số phải có 1 số chẵn và 1 số lẻ

Mà số nguyên tố chẵn duy nhất là 2

=> 1 số là 2. Số còn lại là:

      2009 - 2 = 2007 không là số nguyên tố

=> Tổng của 2 số nguyên tố không thể bằng 2009.

Bình luận (0)
SL
7 tháng 1 2018 lúc 10:13

1) 

Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)

Với p = 3 => p + 2 = 3 + 2 = 5 là  SNT

                => p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)

Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3

=> p + 2 là hợp số (loại)

Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3

=> p + 4 là hợp số (loại)

Vậy p = 3

Bình luận (0)
SL
7 tháng 1 2018 lúc 10:22

3)

a) (2x + 1)(y + 3) = 10

=> 2x + 1 và y + 3 là các ước của 10

Ư(10) = {1; 2; 5; 10}

Lập bảng giá trị:

2x + 111025
y + 310152
x04,50,52
y7-22-1

Đối chiếu điều kiện x,y ∈ N

=> x = 0, y = 7

Vậy x = 0, y = 7

Bình luận (0)
DL
Xem chi tiết
KS
Xem chi tiết
CK
Xem chi tiết
AH
6 tháng 11 2023 lúc 18:31

Lời giải:

$x^2=2y^2+1$ là số lẻ nên $x$ là số lẻ.

$x^2=2y^2+1$

$\Rightarrow x^2-1=2y^2$

$\Rightarrow (x-1)(x+1)=2y^2$

Vì $x$ lẻ nên $x-1, x+1$ đều chẵn

$\Rightarrow (x-1)(x+1)\vdots 4$

$\Rightarrow 2y^2\vdots 4\Rightarrow y^2\vdots 2\Rightarrow y$ chẵn.

Mà $y$ là stn nên $y=2$.

Khi đó: $x^2-1=2y^2=2.2^2=8$

$x^2=8+1=9\Rightarrow x=3$

Vậy $(x,y)=(3,2)$

Bình luận (0)
NT
Xem chi tiết
H24
15 tháng 2 2022 lúc 20:41

\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
2y+1-3-131
x0-224
y-2-110

Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)

 

Bình luận (0)
KG
Xem chi tiết
TT
25 tháng 7 2023 lúc 10:23

x=3,y=2

Bình luận (0)
HS
Xem chi tiết