Những câu hỏi liên quan
LA
Xem chi tiết
BP
Xem chi tiết
LA
Xem chi tiết
HT
Xem chi tiết
CM
10 tháng 2 2019 lúc 16:42

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

Bình luận (0)
NP
Xem chi tiết
VM
14 tháng 10 2019 lúc 16:57

dk 3x+2 

P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)

dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)

P(x2+4) = x <=> Px2-x+4P=0

để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)

Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)

P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)

Bình luận (0)
H24
Xem chi tiết
DD
15 tháng 10 2019 lúc 19:55

\(A=-\left(x^2-2x+4\right)\)

\(A=-\left(x+2\right)^2\)

vì -(x+2)^2 <=0

nên MIN A=0

<=>-(x+2)=0=>x=-2

vây min của A là 0 tại x=-2

Bình luận (0)
H24
15 tháng 10 2019 lúc 19:56

A = 2x - x- 4

A = - [ x- 2 . 1 / 2 . x + ( 1 / 2 )2 - ( 1 / 2 )-  4 ]

A = - ( x - 1 / 2 )- 17 / 4 \(\le\)- 17 / 4

Dấu = xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0

                       \(\Rightarrow\)x = 1 / 2

Vậy : Min A = - 17 / 4 \(\Leftrightarrow\)x = 1 / 2

Bình luận (0)
H24
15 tháng 10 2019 lúc 20:04

B với C nữa

Bình luận (0)
MA
Xem chi tiết
PD
16 tháng 3 2018 lúc 19:29

Ta có:\(A=\dfrac{12x-9}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{12x-9}{x^2+1}-\dfrac{3x^2+3}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{12x-9-3x^2-3}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{12x-3x^2-12}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{-3\left(x^2-4x+4\right)}{x^2+1}\)

\(\Leftrightarrow A-3=\dfrac{-3\left(x-2\right)^2}{x^2+1}\le0\)

\(\Rightarrow A\le3\)

Vậy GTLN của A là 3 \(\Leftrightarrow x=2\)

Bình luận (0)
LL
Xem chi tiết
NA
Xem chi tiết