Những câu hỏi liên quan
FY
Xem chi tiết
NC
20 tháng 9 2019 lúc 18:01

1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
HW
Xem chi tiết
PD
Xem chi tiết
H24
23 tháng 6 2019 lúc 21:16

Tham khảo : https://olm.vn/hoi-dap/detail/101745442506.html

Bình luận (0)
H24
24 tháng 6 2019 lúc 10:26

•~ᗪąɾк - ℌ๏ɾşë~⁀ᶦᵈᵒᶫ hình như bạn kia làm sai òi bạn ạ.

Đây là bài làm của mình:

Nháp trước: \(B=\frac{-4x+3}{x^2+1}\Leftrightarrow Bx^2+4x+\left(B-3\right)=0\) (1)

B = 0 thì \(4x-3=0\Leftrightarrow x=\frac{3}{4}\)

Xét B khác 0 thì (1) là pt bậc 2. (1) có nghiệm tức là \(\Delta'=2^2-B\left(B-3\right)\ge0\)

\(\Leftrightarrow-B^2+3B+4\ge0\Leftrightarrow-1\le B\le4\)

Đây là bài làm; 

Ta chứng minh hằng đẳng thức phụ (lớp 8 được dùng luôn,lớp 7 phải chứng minh): \(a^2+2ab+b^2=\left(a+b\right)^2\)

Thật vậy \(VT=\left(a^2+ab\right)+\left(ab+b^2\right)=a\left(a+b\right)+b\left(a+b\right)=\left(a+b\right)^2\)

Trở lại bài toán

Xét hiệu: \(B-4=\frac{3-4x}{x^2+1}-4=\frac{3-4x-4x^2-4}{x^2+1}=\frac{-4x^2-4x-1}{x^2+1}\)

\(=\frac{-\left(4x^2+4x+1\right)}{x^2+1}=\frac{-\left(2x+1\right)^2}{x^2+1}\le0\)

Do đó B < 4. Dấu "=" xảy ra khi x = -1/2

Bình luận (0)
H24
24 tháng 6 2019 lúc 10:30

Nhưng câu hỏi này trước ở dưới luôn đó bạn tth_new ạ 

Bình luận (0)
NN
Xem chi tiết
DM
6 tháng 2 2016 lúc 12:48

-0.5

Bình luận (0)
DH
6 tháng 2 2016 lúc 12:59

\(y=\frac{1}{x^2+\sqrt{x}}\)

Bình luận (0)
DM
6 tháng 2 2016 lúc 13:13

y đâu ra vậy Hiệp

Bình luận (0)
NC
Xem chi tiết
NT
Xem chi tiết
BH
10 tháng 8 2017 lúc 14:22

\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

b/ Để R<-1   => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)

<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)

<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)

Bình luận (0)
NT
10 tháng 8 2017 lúc 15:33

Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)   là sao vậy ạ?

Bình luận (0)
BH
12 tháng 8 2017 lúc 11:06

Thì \(\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}=1\)

Bình luận (0)
VL
Xem chi tiết
MS
22 tháng 5 2019 lúc 18:25

Sửa đề

\(A=\frac{3+4x}{x^2+1}=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{4x^2-4x+1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\)

\("="\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
MS
22 tháng 5 2019 lúc 17:23

Nhìn đề có vẻ không giống lắm,nhưng mình nghĩ là tương tự
Tham khảo Câu hỏi của Puncco Phạm - Toán lớp 8 | Học trực tuyến

Bình luận (0)
NM
12 tháng 4 2020 lúc 19:10

A=3+4xx2+1=4x2+4−4x2+4x−1x2+1=4−4x2−4x+1x2+1=4−(2x−1)2x2+1≤4

"="⇔x=12

Bình luận (0)
H24
Xem chi tiết
ST
13 tháng 7 2019 lúc 18:52

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50

Bình luận (0)
H24
Xem chi tiết
AM
12 tháng 6 2015 lúc 10:13

\(A=\frac{3-4x}{x^2+1}\Rightarrow Ax^2+4x+\left(A-3\right)=0\left(1\right)\)

Để PT (1) có nghiệm thì \(\Delta^'\ge0\)

\(\Delta^'\)=22-A(A-3)=-A2+3A+4=-(A+1)(A-4)

\(\Rightarrow-\left(A+1\right)\left(A-4\right)\ge0\Rightarrow\left(A+1\right)\left(A-4\right)\le0\Leftrightarrow-1\le A\le4\)

=>Max A=4<=>x=\(-\frac{1}{2}\)

Bình luận (0)