Những câu hỏi liên quan
VA
Xem chi tiết
H24
Xem chi tiết
VP
Xem chi tiết
NH
Xem chi tiết
LL
29 tháng 8 2021 lúc 15:37

\(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+...+\dfrac{1}{101.400}\)

\(\Rightarrow299A=\dfrac{299}{1.300}+\dfrac{299}{2.301}+...+\dfrac{299}{101.400}=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+...+\dfrac{1}{101}-\dfrac{1}{400}=M\)

\(\Rightarrow A=\dfrac{M}{299}\left(1\right)\)

Ta lại có:

\(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+...+\dfrac{1}{298.399}+\dfrac{1}{299.400}\)

\(\Rightarrow101B=\dfrac{101}{1.102}+\dfrac{101}{2.103}+...+\dfrac{101}{399.400}=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+...+\dfrac{1}{399}-\dfrac{1}{400}=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+...+\dfrac{1}{101}-\dfrac{1}{400}=M\)

\(\Rightarrow B=\dfrac{M}{101}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{A}{B}=\dfrac{M}{299}:\dfrac{M}{101}=\dfrac{101}{299}\)

Bình luận (0)
NT
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
VA
Xem chi tiết
LK
Xem chi tiết
H24
10 tháng 5 2016 lúc 10:50

Ta có: \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}.200=\frac{2}{3}\Rightarrow A>\frac{2}{3}\Rightarrowđpcm\)

Bình luận (0)