Tìm tất cả các số tự nhiên m,n sao cho \(A=3^{66m^2+9n^3-2008}+4\) là số nguyên tố.
Tìm số tự nhiên m, n để A=\(3^{66m^2+9n^3-2008}+4\) là số nguyên tố
Lời giải:
Ta có :
\(66m^2+9n^3-2008\equiv -2008\equiv 2\pmod 3\)
Do đó , ta có thể viết \(66m^2+9n^3-2008=3k+2\) (\(k\in\mathbb{N}\) )
Khi đó, \(A=3^{3k+2}+4=9.3^{3k}+4\)
Thấy rằng \(3^3\equiv 1\pmod {13}\Rightarrow 3^{3k}\equiv 1\pmod {13}\)
\(\Rightarrow 9.3^{3k}+4\equiv 9+4\equiv 0\pmod {13}\)
Do đó, \(A\vdots 13\). Để \(A\in\mathbb{P}\Rightarrow A=13\)
\(\Leftrightarrow 2^{66m^2+9n^3-2008}=9\Rightarrow 66m^2+9n^3-2008=2\)
\(\Leftrightarrow 22m^2+3n^3=670\)
\(\Rightarrow 22m^2=670-3n^2< 670\Leftrightarrow m^2<\frac{670}{22}\)
\(\Leftrightarrow m\leq 5\). Thử từ \(0\rightarrow 5\) ta thu được \((m,n)=(1,6)\)
Vậy cặp $(m,n)=(1,6)$ thỏa mãn
Tìm tất cả các số tự nhiên để 3^n+9n+36 là số nguyên tố
Tìm tất cả các số nguyên m,n sao cho :P = 3^72m^2 +9n^3 -2015 +10 là số nguyên tố
1,Tìm chữ số tận cùng của M= 41 +42+ 43 +...............+ 42013
2,Tìm số tự nhiên n để 4n+3 - 4n -63 = 0
3, Tìm tất cả các n để 33 + 9n + 36 là số nguyên tố
Tìm tất cả các số tự nhiên N sao cho
N^4+n^3+1 là số nguyên tố
Tìm tất cả các số nguyên m,n sao cho: \(P=\)\(3^{72m^2+9n^3-2015}+10\)là số nguyên tố
Tìm tất cả các số tự nhiên m,n sao cho x3m^2++6n-61 +4 à số nguyên tố.
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Tìm tất cả các số tự nhiên n sao cho 3n+9.n+36 là số nguyên tố
n thuộc N. =>n lớn hơn hoặc bằng 0
Xét n theo hai trường hợp:
TH1:n lớn hơn 0
Mà n lớn hơn 0 thì 3n+9*n+36 chia hết cho 3
Vì 3n chia hết cho 3, 9*n chia hết cho 3, và 36 cũng chia hết cho 3
=>Nếu n lớn hơn 0 thì 3n+9*n+36 là hợp số
TH2: n=0
Nếu n=0 thì 3n+9*n+36=30+9*0+36=1+0+36=37 là số nguyên tố(tmđb)
Vậy n=0