Cho S =\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}.\)Chứng tỏ rằng : 2<S<5
Cho S=\(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}\)
Chứng minh rằng \(S< \frac{1}{36}\)
Cho S = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\). Chứng tỏ rằng 1/6 < S < 1/4
Chứng tỏ rằng:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
Chứng tỏ rằng
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
Chứng tỏ rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+..........\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+............\frac{99}{100}}\)=2
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2017}}\)
chứng tỏ A<1
2,
\(S=2+2^2+2^3+...+2^{99}\)
C/t: S chia hết cho 7, 31
3,
\(A=1+5+5^2+5^3+5^4+5^5+...+5^{99}+5^{100}\)
Tính A
4,
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)<1
5,
CHỨNG tỏ rằng các p/s tối giản vs mọi số tự nhiên n
a,\(\frac{n+1}{2n+3}\)b,\(\frac{2n+3}{4n+8}\)
6,
a,TÍnh A và B
A=\(\frac{2016^{2016}+2}{2016^{1016}-1}\)B=\(\frac{2016^{2016}}{2016^{2016}-3}\)
b, tính
C=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
LÀm NHANH Hộ MK ,MAi mk Phải Nộp.
2/
S = 2 + 22 + 23 +...+ 299
= (2+22+23) +...+ (297+298+299)
= 2(1+2+22)+...+297(1+2+22)
= 2.7 +...+ 297.7
= 7(2+...+297) chia hết cho 7
S = 2+22+23+...+299
= (2+22+23+24+25)+...+(295+296+297+298+299)
= 2(1+2+22+23+24)+...+295(1+2+22+23+24)
= 2.31+...+295.31
= 31(2+...+295) chia hết cho 31
3/
A = 1+5+52+....+5100 (1)
5A = 5+52+53+...+5101 (2)
Lấy (2) - (1) ta được
4A = 5101 - 1
A = \(\frac{5^{101}-1}{4}\)
4/
Đặt A là tên của biểu thức trên
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy...
5/
a, Gọi UCLN(n+1,2n+3) = d
Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+2 - (2n+3) chia hết cho d
=> -1 chia hết cho d => d = {-1;1}
Vậy...
b, Gọi UCLN(2n+3,4n+8) = d
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+6 - (4n+8) chia hết cho d
=> -2 chia hết cho d => d = {1;-1;2;-2}
Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}
Vậy...
6/
a,Vì B > 1
\(\Rightarrow B=\frac{2016^{2016}}{2016^{2016}-3}>\frac{2016^{2016}+2}{2016^{2016}-3+2}=\frac{2016^{2016}+2}{2016^{2016}-1}=A\)
Vậy A < B
b, C = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Cho A= \(\frac{1}{1^2}+\frac{1}{2^3}+\frac{1}{3^4}+\frac{1}{4^5}+....+\frac{1}{99^{100}}\)
Chứng tỏ rằng A ko phải là số nguyên.
Chứng tỏ giúp mình với !
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
Ta có \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)
\(\Rightarrow A=2\)
Ủa sao bạn ra được \(\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\) số 2 ở 200 đâu ra vậy ! và \(\frac{3}{2}\)nữa !
Cho \(B=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{2014}{5^{2015}}\)
Chứng tỏ rằng : B < \(\frac{1}{16}\)
vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :
1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra
B= >89 _980 - -50 + 678 x 54=143.098-2014/5.2015
vậy B=78
Chua hoc
Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhe Nguyen Chau Tuan Kiet