Những câu hỏi liên quan
VL
Xem chi tiết
PD
13 tháng 6 2023 lúc 15:57

C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1

C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)

C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992

C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)

C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]

C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)

C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)

C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)

Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99

3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)

3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99

3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)

3A = 98×99×100

A = 98×33×100

A = 323400

C = 495000 + 4950 + 323400

C = 823350

Bình luận (0)
QV
Xem chi tiết
SG
25 tháng 6 2016 lúc 18:19

C = 1×99 + 2×98 + 3×97 + ... + 98×2 + 99×1

C = 1×(100 - 1) + 2×(100 - 2) + 3×(100 - 3) + ... + 98×(100 - 98) + 99×(100 - 99)

C = 1×100 - 12 + 2×100 - 22 + 3×100 - 32 + ... + 98×100 - 982 + 99×100 - 992

C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)

C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]

C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)

C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)

C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)

Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99

3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)

3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99

3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)

3A = 98×99×100

A = 98×33×100

A = 323400

C = 495000 + 4950 + 323400

C = 823350

Bình luận (0)
QV
Xem chi tiết
RJ
Xem chi tiết
HL
30 tháng 6 2019 lúc 21:38

C = 1 × 99 + 2 × 98 + 3 × 97 + ... + 98 × 2 + 99 × 1

C = 1 × (100 - 1) + 2 × (100 - 2) + 3 × (100 - 3) + ... + 98 × (100 - 98) + 99 × (100 - 99)

C = 1 × 100 - 12 + 2 × 100 - 22 + 3 × 100 - 32 + ... + 98 × 100 - 982 + 99×100 - 992

C = (1×100 + 2×100 + 3×100 + ... + 98×100 + 99×100) - (12 + 22 + 32 + ... + 992)

C = 100×(1 + 2 + 3 + ... + 98 + 99) - [(1 + 0)×1 + (1 + 1)×2 + (1 + 2)×3 + ... + (1 + 98)×99]

C = 100×(1 + 99)×99:2 + (1 + 0×1 + 2 + 1×2 + 3 + 2×3 + ... + 99 + 98×99)

C = 50×100×99 + [(1 + 2 + 3 + ... + 99) + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + [(1+99)×99:2 + (0×1 + 1×2 + 2×3 + ... + 98×99)]

C = 495000 + 50 × 99 + (0×1 + 1×2 + 2×3 + ... + 98×99)

C = 495000 + 4950 + (0×1 + 1×2 + 2×3 + ... + 98×99)

Đặt A = 0×1 + 1×2 + 2×3 + ... + 98×99

3A = 1×2×(3-0) + 2×3×(4-1) + ... + 98×99×(100-97)

3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + ... + 98×99×100 - 97×98×99

3A = (1×2×3 + 2×3×4 + ... + 98×99×100) - (0×1×2 + 1×2×3 + ... + 97×98×99)

3A = 98×99×100

A = 98×33×100

A = 323400

C = 495000 + 4950 + 323400

C = 823350

~ Hok tốt ~

Bình luận (0)
NP
Xem chi tiết
DN
Xem chi tiết
LL
10 tháng 10 2016 lúc 18:43

Ở Tử số là phép cộng tổng mà: 

1 xuất hiện 99 lần
2 xuất hiện 98 lần
3 xuất hiện 97 lần
... 
99 xuất hiện 1 lần


Do đó tử số bằng: 1 x 99 + 2 x 98 + 3 x 97 +...99 x 1

Vậy phân số trên có tử số bằng mẫu số nên bằng 1

Bình luận (0)
OO
10 tháng 10 2016 lúc 18:44

= 1 Vì tử số và mẫu số đều bằng nhau !

Bình luận (0)
BD
10 tháng 10 2016 lúc 18:45

phép tính này 

= 1

vì mẫu và tử đều giống nhau 

nhé !

Bình luận (0)
NC
Xem chi tiết
XO
11 tháng 8 2020 lúc 21:54

Đặt \(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right):\left(\frac{1}{1.99}+\frac{1}{3.97}+....+\frac{1}{97.3}+\frac{1}{99.1}\right)\)

Đặt \(B=\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{97.3}+\frac{1}{99.1}\)

=> 100 x B = \(\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{97.3}+\frac{100}{99.1}=1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+...+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1\)

=> 100 x B = \(2.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)

=> \(B=\frac{1}{50}.\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)\)

Khi đó A = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{50}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{\frac{1}{50}}=50\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
H24
28 tháng 10 2017 lúc 16:12

ko biet

Bình luận (0)
TH
Xem chi tiết
TH
1 tháng 10 2016 lúc 20:47

làm được mình cho,thanks

Bình luận (0)