Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TD
Xem chi tiết
H24
5 tháng 1 2019 lúc 0:09

Ơ, đề phải là lớn hơn hẳn 3 chứ nhỉ ? sao lại bằng đc ? nếu bằng thì đề sai ; sửa là lơn hơn hẳn 3 nhé 

Có p2 - 1 = (p - 1)(p + 1)

Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)

*Nếu p = 3k + 1

=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)

              = 3k( 3k + 2 ) chia hết cho 3

*Nếu p = 3k + 2 

=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)

              =( 3k + 1) .(3k + 3)

              = 3 ( k + 1 )( 3k + 1 ) chia hết cho 3 

Vậy ......... 

Bình luận (0)
BN
5 tháng 1 2019 lúc 10:39

 Vương Cô Lô Nhuê

Có p2 - 1 = (p - 1)(p + 1)

Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)

*Nếu p = 3k + 1

=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)

              = 3k( 3k + 2 ) chia hết cho 3

*Nếu p = 3k + 2 

=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)

              =( 3k + 1) .(3k + 3)

              = 3 ( k + 1 )( 3k + 1 ) chia hết cho 3 

Vậy ......... 

Bình luận (0)
TQ
Xem chi tiết
H24
26 tháng 10 2018 lúc 20:39

Ta có: p>3=>p là số lẻ

Ta có: TH: p=2k+1

p2-1=4k2+4k

=4(k2+k)

=>p2-1 chia hết cho 8

TH: p=3k+1

=>p2-1=9k2+6k

=> chia hết cho 3

TH: p=3k+2

=>p2-1=9k2+12k+3

chia hết cho 3

=> p2-1 CHIA HẾT CHO 3;8

=> p2-1 CHIA HẾT CHO 24 với điều kiện p>3

Bình luận (0)
ND
Xem chi tiết
BN
5 tháng 1 2019 lúc 10:40

Có p2 - 1 = (p - 1)(p + 1)

Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)

*Nếu p = 3k + 1

=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)

              = 3k( 3k + 2 ) chia hết cho 3

*Nếu p = 3k + 2 

=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)

              =( 3k + 1) .(3k + 3)

              = 3 ( k + 1 )( 3k + 1 ) chia hết cho 3 

Vậy ......... 

Bình luận (0)
PC
Xem chi tiết
TC
Xem chi tiết
NQ
18 tháng 12 2017 lúc 20:48

p nguyên tố > 3 nên p lẻ => p+1 chia hết cho 2 (1)

p nguyên tố > 3 nên p ko chia hết cho 3

Nếu p chia 3 dư 1 thì p+2 chia hết cho 3 

Mà p+2 > 3 => p+2 là hợp số

=> để p+2 cũng là số nguyên tố thì p chia 3 dư 2

=> p+1 chia hết cho 3 (2)

Từ (1) và (2) => p+1 chia hết cho 2 . 3 = 6 ( vì  2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

Bình luận (0)
PL
10 tháng 6 2018 lúc 13:46

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

Bình luận (0)
HT
Xem chi tiết
AL
Xem chi tiết
NM
2 tháng 1 2016 lúc 7:31

số p khi chia cho 3 có số dư là 1 hoặc 2 hoặc 0=>p có 3 dạng là 3k+1,3k,3k+2.

nếu p=3k=>p=3 thì p^2+8=9+8=17 và p^2+2=9+2=11 đều là số nguyên tố(thỏa mãn)

nếu p=3k+1 thì:

           p- 1(mod3)

=>p^2- 1^2-1(mod3)

=> p^2 chia 3 dư 1=> p^2 có dạng là 3q+1 ta có3q+1+8=3q+9 chia hết cho 3, q thuộc N loại

nếu p=3k+2 thì :

p- 2=>p^2 - 2^2 -- 1 (mod 3)

=> p^2 chia 3 dư 1 => p^2 có dạng là 3c+1 ta có3c+1+8=3q+9 chia hết cho 3, c thuộc N loại

Vậy chỉ với p=3 thì thỏa mãn đầu bài

Bình luận (0)
NM
1 tháng 1 2016 lúc 17:51

p=3 chuẩn luôn tick nha

Bình luận (0)
TL
Xem chi tiết
H24
6 tháng 11 2019 lúc 21:07

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

Bình luận (0)
 Khách vãng lai đã xóa
NC
12 tháng 3 2022 lúc 14:44

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

Bình luận (0)
BT
11 tháng 8 2024 lúc 9:26

1. Gọi số M là số lẻ, Q là số chẵn, nguyên tố cần tìm là P ( P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng) 

- P = A + 2 ( M + Q = M )

- P = B - 2 ( M - Q = M )

- A = P - 2; B = P +  2 

P + 2; P; P - 2 ⇒ 3 số lẻ liên tiếp.

- P ≠ 1 vì P là số nguyên tố.

- P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng.

- P ≠ 3 vì 3 = A + 2; 3 = 1 + 2 ( 1 không phải là số nguyên tố )

- P = 5 vì A + 2 = 5 = B - 2

               3 + 2 = 5 = 7 - 2

⇒ P = 5

Bình luận (0)
PA
Xem chi tiết