\(B=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+......+\frac{2^3}{101.103}\)
tính giá trị của biểu thức sau:
B= \(\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+....+\frac{2^3}{101.103}\)
Thực hiện các phép tính:
a) \(A=4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{64}\right):\frac{-27}{8}\)
b) \(C=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+...+\frac{2^3}{101.103}\)
a)Ta có:
\(A=4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{64}\right):\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+25.\frac{36}{125}:\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+\frac{36}{5}:\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+\frac{-32}{15}\)
\(\Rightarrow A=\frac{823}{240}\)
Vậy A=.....
b)Ta có:
\(C=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+...+\frac{2^3}{101.103}\)
\(\Rightarrow C=\frac{2^2.2}{3.5}+\frac{2^2.2}{5.7}+\frac{2^2.2}{7.9}+...+\frac{2^2.2}{101.103}\)
\(\Rightarrow C=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{101}-\frac{1}{103}\right)\)
\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{103}\right)\)
\(\Rightarrow C=4.\frac{100}{309}\)
\(\Rightarrow C=\frac{400}{309}\)
Vậy C=.....
B, C=2^3/3.5 + 2^3/5.7+......+2^3/101.103
C= 2^3(1/3-1/5+1/5-1/7+....+1/101-1/103)
C=8(1/3-1/103)
C=8.100/309
C=800/309
VẬY C= 800/309
Tính ?
A.\(3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)
B.\(\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...\frac{4}{2015.2017}\)
A. Đặt A= biểu thức đã cho
=>\(\frac{A}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=>\(\frac{A}{3}.2=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
=>\(\frac{2A}{3}-\frac{A}{3}=2-\frac{1}{2^9}\)
=>\(A=\frac{3\left(2^{10}-1\right)}{2^9}\)
B. Đặt B=biểu thức đã cho
\(\Rightarrow\frac{B}{2}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2015.2017}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(=\frac{1}{3}-\frac{1}{2017}=\frac{2014}{6051}\)
\(\Rightarrow B=\frac{4028}{6051}\)
a) (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)) . x =\(\frac{1}{3}\)
b) (\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)) : x = \(\frac{2}{3}\)
c) (\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)) . x = \(\frac{2}{3}\)
Mik đang cần gấp
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
b)( \(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{9}-\frac{2}{11}_{ }\)):x =\(\frac{2}{3}\)
Giống câu a
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{197.200}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(D=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{101.105}\)
\(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
Tính:
a) \(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}\)
b) \(B=\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
Ai nhanh mình tick cho
a, Ta có \(A=\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)
\(=\frac{3}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}-\frac{3}{102}=\frac{48}{102}=\frac{24}{51}\)
b,Ta có \(\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(=\frac{2-1}{2}+\frac{4-2}{2.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{16-11}{11.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(=\frac{15}{16}\)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!1111
\(a)\) \(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}\)
\(A=3\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.50}\right)\)
\(2A=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.50}\right)\)
\(2A-A=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=3\left(\frac{1}{3}-\frac{1}{50}\right)\)
\(A=1-\frac{3}{50}\)
\(A=\frac{47}{50}\)
Vậy \(A=\frac{47}{50}\)
\(b)\) \(B=\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(B=1-\frac{1}{16}\)
\(B=\frac{15}{16}\)
Vậy \(B=\frac{15}{16}\)
Chúc bạn học tốt ~
\(\frac{2}{3}x-\frac{780}{11}:\left(\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\right)=-5\)
2\3x-780\11:[13\2.(1\3.5+1\5.7+1\7.9+1\9.11]=-5
2\3x-780\11:[13\2.(1\3-1\5+1\5-1\7+....+1\9-1\11)]=-5
2\3x-780\11:[13\2.(1\3-1\11)]=-5
2\3x-780\11:[13\2.8\33]=-5
2\3x-780\11:52\33=-5
2\3x-525\13=-5
2\3x=-5+525\13
2\3x=460\13
x=460\13:2\3
x=690\13
Tính
A= \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
B= \(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{68.71}\)
C= \(\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}.............................\frac{2499}{2500}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(A=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{21}\)
\(A=\frac{1}{3}-\frac{1}{21}\)
\(A=\frac{2}{7}\)
\(B=\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{68.71}\)
\(=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+...+\frac{1}{68}-\frac{1}{71}\)
\(=\frac{1}{11}-\frac{1}{71}\)
\(=\frac{71}{781}-\frac{11}{781}\)
\(=\frac{60}{781}\)
\(B=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.6\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(C=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(D=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)