Chứng minh rằng một số chính phương thì chia hết cho 3 hoặc chia 3 dư 1
Chứng minh rằng 1 số chính phương hoặc chia hết cho 3 hoặc chia cho 3 dư 1, số chính phương chia hết cho 4 hoặc chia cho 4 dư 1,
a
Gọi số chính phương đó là \(a^2\).Do a là số nguyên nên a có dạng \(3k+1;3k+2;3k\)
Với \(a=3k\) thì \(a^2=9k^2⋮3\)
Với \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
Với \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1
Vậy số chính phương chia 3 dư 0 hoặc 1
Gọi số chính phương đó là \(b^2\).Do b là số nguyên nên b có các dạng \(4k;4k+1;4k+2;4k+3\)
Tương tự xét như câu a nha.Ngại viết.
Báo mới trên Toán Tuổi Thơ về tính chất.
Chứng minh rằng:
a) Một số chính phương hoặc chia hết cho 3 hoặc chia cho 3 dư 1
b) Một số chính phương hoặc chia hết cho 4 hoặc chia 4 dư 1
19 phút đã thôi qua nhưng không ai đưa ra đáp án . Vì thế mình sẽ công bố luôn:
Đáp án:
Chứng minh. Xét \(a^2\)là một số chính phương, với \(a\in Z\)
a) Số nguyên a chia hết cho 3 hoặc khi chia 3 dư 1 hoặc 2.
Nếu \(a\)\(⋮\)3 thì \(a^2\)\(⋮\)3
Nếu a chia cho 3 dư 1 hoặc 2 thì (a - 1) \(⋮\) 3 hoặc (a + 1) \(⋮\) 3. Suy ra (a - 1)(a + 1) \(⋮\)3 hay (\(a^2\)- 1) \(⋮\) 3.
b) Nếu a \(⋮\) 2 thì \(a^2\) \(⋮\) 4.
Nếu a không chia hết cho 2 thì (a - 1) \(⋮\) 2. Suy ra (a - 1) (a + 1) \(⋮\) 4 hay ( \(a^2\) - 1) \(⋮\)4.
Do đó \(a^2\) chia 4 dư 1 (ĐPCM)
a)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
giúp mình với mọi người ơi!!! Khẩn cấp!!!
1. Cho x,y thuộc N. Chứng minh rằng (x + 2y chia hết cho <=> (3x -4y) chia hêt cho 5
2. Viết liên tiếp số 2a1 (2007 lần) ta đc số chia hết cho 11. Tìm a
3. Chứng minh rằng một số chính phương hoặc chia hết cho 4 hoặc chia 4 dư 1
4. Chứng minh rằng nếu n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24.
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
chứng minh rằng : một số chính phương hoặc chia hết cho 25 hoặc chia cho 5 dư 1 hoặc dư 4
a=5n=> a^2=5^2.n^2 =25.n^2 hiển nhiên chia hết cho 25
a=5n+1=>a^2= 25n^2+10n+1 =5(5n^2+2n)+1 chia 5 dư 1
a=5n+2=> a^2=25n^2+20n+4=5(5n^2+4n)+4 chia 5 dư 4
a=5n+3=> a^2=25n^2+30n+9=5(5n^2+6n+1)+4 chia 5 dư 4
a=5n+4=>a^2=25n^2+40n+16=5(5n^2+8n+3)+1 chia 5 dư 1
=> dpcm
Chứng minh rằng một số chính phương khi chia cho 3 chỉ có thể chia hết hoặc dư 1.
CHTT
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Chứng minh rằng: Một số chính phương chia cho 3, cho 4 chỉ có thể dư 0 hoặc 1
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Đó là cách làm của mình có j không ổn mọi người bổ sung giúp mình nhé. Chúc bạn học giỏi!
bai nay de ma dau co kho gi dau
Chứng minh 1 số chính phương chia hết cho 4 hoặc dư 1 chứ không dư 2 và 3
TH1, số đó là bình phương 1 số chẵn \(A=\left(2n\right)^2=4n^2\) chia hết cho 4
TH2, số đó là bình phương 1 số lẻ \(A=\left(2n+1\right)^2=4n^2+4n+1\)chia 4 dư 1!
Chứng minh 1 số chính phương chia hết cho 4 hoặc chia cho 4 dư 1 chứ không dư 2 3