Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VC
Xem chi tiết
OO
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Bình luận (0)
NC
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Bình luận (0)
DT
Xem chi tiết
DA
Xem chi tiết
ON
Xem chi tiết
DV
30 tháng 12 2016 lúc 15:18

mấy bài như này hình như dùng miền giá trị được đó bạn

hộ mik nhé

tks bạn

Bình luận (0)
AV
Xem chi tiết
PT
Xem chi tiết
CC
Xem chi tiết
HN
11 tháng 7 2016 lúc 17:37
TÌM MIN : 

Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x^2+2x+1\right)+\left(x^2-x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)

Vậy Min = \(\frac{1}{3}\Leftrightarrow x=-1\)

TÌM MAX : 

Ta có : \(\frac{x^2+x+1}{x^2-x+1}=\frac{-2\left(x^2-2x+1\right)+3\left(x^2-x+1\right)}{x^2-x+1}=\frac{-2\left(x-1\right)^2}{x^2-x+1}+3\le3\)

Vậy Max = 3  <=> x = 1

Bình luận (0)
HL
Xem chi tiết
DA
Xem chi tiết
AH
25 tháng 7 2020 lúc 13:42

Lời giải:

ĐK: $x\in\mathbb{R}$

$A=\frac{x^2+x+1}{x^2+1}=1+\frac{x}{x^2+1}$

$2A=2+\frac{2x}{x^2+1}=1+\frac{(x+1)^2}{x^2+1}$

Vì $(x+1)^2\geq 0; x^2+1>0$ với mọi $x$ nên $\frac{(x+1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\geq 1$

$\Rightarrow A\geq \frac{1}{2}$. Vậy $A_{\min}=\frac{1}{2}$ khi $x=-1$

Mặt khác:

$2A=2+\frac{2x}{x^2+1}=3-(1-\frac{2x}{x^2+1})=3-\frac{(x-1)^2}{x^2+1}$

Lập luận tương tự ở trên ta cũng có $\frac{(x-1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\leq 3\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$ khi $x=1$

Bình luận (0)