Tính x^2015 + y^2016 + z^2017. Biết x + y + z = x^2 +y ^2 + z^2 = x^3 + y^3 + z^3
cho 3 số x, y, z thoả mãn x/2015=y/2016=z/2017 C/m (x-z)^3 = 8(x-y) ^2. (y-z)
Đặt x/2015=y/2016=z/2017=k
=> x=2015k
=> y=2016k
=> z=2017k
Ta có
•(x-z)3=(2015k-2017k)3=(-2k)3=-8k3 (1)
•8(x-y)2(y-z)=8(2015k-2016k)2(2016k-2017k)= 8(-k)2(-k)=-8k3 (2)
Từ (1) và (2) => (x-z)3=8(x-y)2(y-z)
Cho 3 số x,y,z thỏa mãn : x/2016 = y/2017 = z/2018
a CMR : (x-z)^2 = 8(x-y) (y-z)
b Cho biết x/24 + y/4 = z/2018 . Tính x,y,z ?
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
1)
Cho 3 số x,y,z đôi một phân biệt thỏa mãn \(\frac{x}{2015}=\frac{y}{2016}=\frac{z}{2017}\)
Vậy (x-z)^3:((x-y)^2(y-z))
tìm các số x,y,z biết
x^2+y^2+z^2=xy+yz+zx và x^2015+y^2015+z^2015=3^2016
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
cau a ban de o hang dang thuc (x-y-z)^2 di
Cho x, y, z thuộc Z thỏa mãn x-y+z=2016. Tìm x, y, z, biết:
\(x^3-y^3+z^3=2017^2\)
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
cho x,y,z la so thuc thoa man y+z+3/x=x+z+2/y=x+y-3/z=1/x+y+z.
Tinh A=2016.x+y^2017+z^2017
Câu hỏi của Phung Thi Thanh Thao - Toán lớp 7 - Học toán với OnlineMath
Tham khảo tính được x,y,z.Thay vào A
cho x/2015 = y/2016 = x/2017
Chứng minh (x-z)3 = -8(x-y)2.(z-y)
Đặt \(\frac{x}{2015}=\frac{y}{2016}=\frac{z}{2017}=k\)
\(\Rightarrow x=2015k;y=2016k;z=2017k\)
Ta có:
\(\left(x-z\right)^3=\left(2015k-2017k\right)^3=-8k^3\left(1\right)\)
Mặt khác:
\(-8\left(x-y\right)^2\left(z-y\right)=-8\left(2015k-2016k\right)^2\left(2017k-2016k\right)\)
\(=-8k^2\cdot k=-8k^3\left(2\right)\)
Từ ( 1 );( 2 ) suy ra đpcm
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
3.
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)
\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)
\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)
\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)
Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$
$\Rightarrow x^2+4034+5> 4x+4034$
$\Rightarrow \text{VP}> \text{VT}$
Do đó pt vô nghiệm.
Chox^2+y^2+z^2=xy+yz+xz và x^2015+y^2015+x^2015=3^2016
Tính x,y,z