chứng minh rằng với mọi số dương n ta luôn có
a, ( n+1)(n+4 ) chia hết cho 2 . HELP ME
Chứng minh rằng với mọi số nguyên dương n ta luôn có\(5^{n+2}+3^{n+2}-3^n-5^n\)chia hết cho 24
\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)
Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)
Vậy ta đc đpcm
5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8
Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên
CHỨNG MINH RẰNG VỚI MỌI N NGUYÊN DƯƠNG TA CÓ :
B, n^3 +11n chia hết cho 6 . HELP ME
Ta có:
n3 + 11n
= n3 - n + 12n
= n.(n2 - 1) + 12n
= n.(n - 1).(n + 1) + 12n
= (n - 1).n.(n + 1) + 12n
Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3
Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6
=> n3 + 11n chia hết cho 6 ( đpcm)
chứng minh rằng với mọi số nguyên n thì (2n - 1)3 - (2n - 1) luôn luôn chia hết cho 8
help me!!!
Chứng minh rằng với mọi số nguyên dương n ta luôn có 5^n+2 + 3^n+2 - 3^n - 5^n chia hết cho 24
\(5^{n+2}+3^{n+2}-3^n-5^n=\left(5^{n+2}-5^n\right)+\left(3^{n+2}-3^n\right)=5^n\left(25-1\right)+3^n\left(9-1\right)\)
\(=5^n.24+3^n.8\)vì: \(n\in N;n\ne0\Rightarrow3^{n-1}\inℕ\)
\(=5^n.24+3^{n-1}.24=24\left(5^n+3^{n-1}\right)⋮24\)
5n + 2 + 3n + 2 - 3n -5n
= 5n. ( 52 -1 ) + 3n . ( 32 - 1 )
= 5n . 24 + 3n . 8
= 5n . 24 + 3n - 1 . 24
= 24 . ( 5n + 3n )
Vì 24\(⋮\)24
Nên 24 . ( 5n + 3n ) \(⋮\)24
Vậy 5n + 2 + 3n + 2 - 3n -5n \(⋮\)24
Chứng minh với mọi số nguyên dương n và số tự nhiên lẻ k ta luôn có (k^2^n-1) chia hết cho 2^n+2
Chứng minh rằng với mọi số nguyên dương n ta luôn có 5n+2 + 3n+2 - 3n - 5n chia hết cho 24
Ta có \(5^{n+2}+3^{n+2}-3^n-5^n=5^n.25+3^n.9-3^n-5^n\)
\(=5^n.\left(25-1\right)+3^n.\left(9-1\right)\)
\(=5^n.24+3^n.8\)
\(=5^n.24+3^{n-1}.24\)
\(=24.\left(5^n+3^{n-1}\right)⋮24\)( đpcm)
Ta có : \(5^{n+2}-3^{n+2}-3^n-5^n=5^n.25+3^n.9-3^n-5^n\)
\(=5^n.\left(25-1\right)+3^n.\left(9-1\right)\)
\(=5^n.24+3^n.8\)
\(=5^n.24+3^{n-1}.24\)
\(=24.\left(5^n+3^{n-1}\right)⋮24\left(đpcm\right)\)
Chứng minh rằng với mọi số nguyên n ta luôn có n2+n+1 không chia hết cho 9
n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9
Vậy với mọi n la só tu nhiên thì n.2+n+1 ko chia hết cho 9
Chứng minh rằng với mọi số nguyên dương n , ta luôn có:
1/n+1 + 1/n+2 +...+ 1/2*n < 3/4
Chứng minh rằng với mọi số nguyên n thì ta luôn có: B = n^2 + n + 3 không chia hết cho 2
\(B=n^2+n+3\)
\(=n.n+n+3\)
\(=n\left(n+1\right)+3\)
Mà \(n\left(n+1\right)⋮2\) với mọi \(n\in Z\)
\(\Rightarrow B⋮̸2\)