Những câu hỏi liên quan
DB
Xem chi tiết
LP
10 tháng 7 2023 lúc 17:55

a) Ta viết lại dãy đã cho thành \(1\dfrac{1}{3},1\dfrac{1}{8},1\dfrac{1}{15},...\)

 Ta có thể thấy mẫu số của phần phân số trong các hỗn số của dãy là dãy các tích của 2 số cách nhau 2 đơn vị kể từ \(1.3\). Chẳng hạn \(3=1.3\)\(8=2.4\)\(15=3.5,...\) Do đó ta rút ra công thức số hạng tổng quát của dãy là \(u_n=1\dfrac{1}{n\left(n+2\right)}\)\(1+\dfrac{1}{n\left(n+2\right)}=\dfrac{n^2+2n+1}{n\left(n+2\right)}=\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)

 b) Ta cần tính \(u_1.u_2...u_{98}\). Ta thấy rằng 

\(u_1.u_2...u_{98}\) \(=\dfrac{\left(1+1\right)^2}{1.3}.\dfrac{\left(2+1\right)^2}{2.4}.\dfrac{\left(3+1\right)^2}{3.5}...\dfrac{\left(98+1\right)^2}{97.99}\) \(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{6^2}{4.6}...\dfrac{98^2}{97.99}.\dfrac{99^2}{98.100}\) \(=\dfrac{2.99}{100}=\dfrac{99}{50}\)

Bình luận (0)
LP
10 tháng 7 2023 lúc 17:57

Chỗ này mình bị thiếu dấu "=" 

Bình luận (0)
NT
10 tháng 7 2023 lúc 18:39

a) \(1\&\dfrac{1}{1.3};1\&\dfrac{1}{2.4};1\&\dfrac{1}{3.5};1\&\dfrac{1}{4.6};...1\&\dfrac{1}{n.\left(n+2\right)}\left(n\in\right)N^{\cdot}\)

b) \(\dfrac{1}{1.3}.\dfrac{1}{2.4}.\dfrac{1}{3.5}.\dfrac{1}{4.6}....\dfrac{1}{98.100}\)

\(=\dfrac{1}{1.2.3...97}.\dfrac{1}{3.4.5...97}.\dfrac{1}{98.100}\)

\(=\dfrac{1}{97!}.\dfrac{1.2}{1.2.3.4.5...97}.\dfrac{1}{98.100}\)

\(=\dfrac{1}{50.98}.\dfrac{1}{\left(97!\right)^2}=\dfrac{1}{4900.\left(97!\right)^2}\)

Bình luận (0)
TB
Xem chi tiết
NH
25 tháng 6 2021 lúc 21:45

\(1\dfrac{1}{3}=1\dfrac{1}{\left(1+2\right)1};1\dfrac{1}{8}=1\dfrac{1}{\left(2+2\right)2}\)

số thứ 98 = \(1\dfrac{1}{\left(98+2\right)98}=1\dfrac{1}{9800}\)

Bình luận (0)
LD
Xem chi tiết
BT
Xem chi tiết
DV
Xem chi tiết
TL
18 tháng 7 2015 lúc 14:27

Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)

=> Số hạng  thứ 98 là : \(\frac{99^2}{98.100}\)

=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)

Bình luận (0)
H24
18 tháng 7 2015 lúc 14:30

Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)

=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)

Vậy ta cần tính tích:

A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)

   = \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)

   =\(\frac{99.2}{1.100}=\frac{99}{50}\)

Bình luận (0)
ML
26 tháng 3 2017 lúc 10:30

Tích của 98 số hạng đầu tiên của dãy trên là \(\frac{99}{50}\).

Bình luận (0)
NL
Xem chi tiết
US
Xem chi tiết
MD
Xem chi tiết
HV
29 tháng 7 2015 lúc 11:50

Các số có hai chữ số chia hết cho 17 là: 17, 34, 51, 68, 85.

Các số có hai chữ số chia hết cho 23 là: 23, 46, 69, 92. 

Để ý các chữ số cuối cùng của các số trên đôi một khác nhau, do đó nếu biết chữ số cuối cùng thì xác định dc duy nhất chữ số đứng trước nó.

Vì chữ số cuối cùng của M là 1 nên chữ số trước nó là chữ số 5.

Đứng trước chữ số 5 là chữ số 8.

Lập luận tương tự ta thấy số M có tận cùng ….69234692346851.

Như vậy trừ 3 chữ số cuối là 851, các chữ số của M lặp theo chu kì 69234.

Vì M có 2014 chữ số nên chữ số đầu tiên là 6.

Bình luận (0)
HV
29 tháng 7 2015 lúc 11:52

Thế này nhé, cho nhanh:

Bình luận (0)
H24
12 tháng 7 2018 lúc 15:30

bạn giỏi đấy 

Bình luận (0)
H24
Xem chi tiết
HG
28 tháng 7 2015 lúc 13:46

???? Khó hiểu quá không hiểu gì luôn

Bình luận (0)