Tìm GTNN : Q = |2x-3|+2|x-1|+(x-1)^2016
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm GTNN
P= 2017+ căn bậc x-2018
Q= 2x-3\5-3x ( x thuộc Z)
Tìm GTLN
B= x+2 \|x| ) x thuộc Z)
C= 2016* x -1 \ 2015*x+2016
Tìm GTNN:
a)A=|x+1|+|x+2|+|+x+3|+...+|x+2016|+100
b)B=|x+1|+|x+2|+|+x+3|+...+|x+2016|+|x+2017|+100
c)C=|5x+3|+|2x-2|-x+1
tìm GTNN của x^2 +y^2-2x+6y+2016
dưới đây là bài giải của mình có gì các bạn góp ý cho nhé
Ta có :x^2+y^2-2x+6y+2016=x^2-2x+1+y^2+6x+9+2006
=(x-1)^2+(y+3)^2+2006
mà (x-1)^2\(\ge\)0
(y+3)^2\(\ge\)0
\(\rightarrow\)(x-1)^2+(y+3)^2+2006\(\ge\)2006
=>x^2+y^2-2x+6y+2016 có giá trị nhỏ nhất là 2006
Hay lắm bạn ơi! Nhưng ở chỗ kết luận sau khi nói bthuc có GTNN là 2006 thì bạn phải tìm ra x,y để bthuc trên đạt GTNN
VD: x^2 + y^2 - 2x + 6y + 2016 có giá trị nhỏ nhất là 2006 đạt được khi x=1; y=-3
Như vậy mới được điểm tối đa
Very good!You' ve done it without mistakes.
1. Cho f(x) thoả mãn 3 . f(x) - f( 1 - x ) = x2 + 1 với mọi x. Tính f( 1 ), f( 0 ), f( -1 )
2. Tìm số nguyên x để
a) A = \(\frac{2016}{x-2019}\)đạt GTNN
b) B = \(\frac{31-2x}{15-2x}\)đạt GTLN
c) C = \(\frac{26-x}{x-20}\)đạt GTNN
AI giải nhanh đầy đủ 3 tick nha
1.Cho x>0.Tìm GTNN của
\(A=2x+\frac{1}{x^2}+\sqrt{2}\)
2.Cho x>0.Tìm GTLN của
\(B=\frac{x}{\left(x+2016\right)^2}\)
1) Ta có : \(A=2x+\frac{1}{x^2}+\sqrt{2}=x+x+\frac{1}{x^2}+\sqrt{2}\)
Áp dụng bất đẳng thức Cauchy : \(x+x+\frac{1}{x^2}\ge3.\sqrt[3]{x.x.\frac{1}{x^2}}=3\)
\(\Rightarrow A\ge3+\sqrt{2}\). Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{1}{x^2}\Leftrightarrow x=1\)
Vậy A đạt giá trị nhỏ nhất bằng \(3+\sqrt{2}\) tại x = 1
2) Đặt \(y=x+2016\) \(\Rightarrow x=y-2016\)thay vào B :
\(B=\frac{x}{\left(x+2016\right)^2}=\frac{y-2016}{y^2}=-\frac{2016}{y^2}-\frac{1}{y}\)
Lại đặt \(t=\frac{1}{y}\) , \(B=-2016t^2+t=-2016\left(t-\frac{1}{4032}\right)^2+\frac{1}{8064}\le\frac{1}{8064}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{4032}\Leftrightarrow y=4032\Leftrightarrow x=2016\)
Vậy B đạt gá trị lớn nhất bằng \(\frac{1}{8064}\)tại x = 2016
x=2016
nhé bn
đúng ko vậy
bn mình
ko biết
X = 2016
đúng thì kick cho mình nhé !
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
1. a) Ta có:
|x-3| > 0
=> |x-3| + 2 > 2
=> (|x-3| + 2)2 > 22 = 4
|y+3| > 0
=> P = (|x-3|+2)2 + |y+3| + 2007 > 4 + 0 + 2007 = 2011
=> GTNN của P là 2011
<=> x-3 = y+3 = 0
<=> x = 3; y = -3.
1) Tìm GTNN của các biểu thức:
a) P= (|x-3|+2)2 + |y+3|+2007
b) Q= |x-2008| + |x-2009|
3) A= |2x-2|+|2x-2013|
4) B= |2013-x| + |2014-x|
5) C= |x-2014|+|2015-x|+|x-2016|
6) D= |x-2|+|x-9|+|x+1945|
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
1.Tìm GTNN
a.\(x^2+y^2+z^2-2x+4y-6z+2016\)
b.\(2x^2+2xy+y^2-2x-2y+2\)
2.Tìm GTLN
a.\(_{-8x^2+17x+21}\)
b.\(-\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+15\)
CÁC BẠN LÀM ƠN GIÚP MÌNH VỚI NHÉ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Tìm GTNN của M = /x-1/ + /x-2/ + /x-3/
b) Với x thuộc Z, tìm GTNN của N= 2016-x/x-2016
Áp dụng BĐT giá trị tuyệt đối: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Ta có:\(M=\left(\left|-x+1\right|+\left|x-3\right|\right)+\left|x-2\right|\ge\left|-x+1+x-3\right|+\left|x-2\right|=2+\left|x-2\right|\ge2\) với mọi x
Do đó MMin=2
\(M=2\Leftrightarrow\int^{\left(-x+1\right).\left(x-3\right)\ge0}_{x=2}\Leftrightarrow\int^{1\le x\le3}_{x=2}\Leftrightarrow x=2\)
Vậy MMin=2 tại x=2