Những câu hỏi liên quan
DC
Xem chi tiết
LN
Xem chi tiết
NH
16 tháng 12 2023 lúc 14:32

A = 20102011 - 20102010

A = 20102010 .( 2010 - 1)

A = 20102010.2009

2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 4 2021 lúc 22:41

Nó có chia hết à ??? 

Ta thấy 2009 chia 2010 dư  -1 

=> 2009 ^ 2008 chia 2010 dư 1 (1)

Lại có  2011 chia 2010 dư 1

=> 2011^2010 chia 2020 dư 1 (2)

Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )

Bình luận (0)
TH
9 tháng 4 2021 lúc 17:44

2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010

=2009^2008+2011^2010

=2009^2008+2011^2010+1-1

=(2009^2008+ 1) + (2011^2010– 1)

= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)

= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010  

Bình luận (2)
TH
9 tháng 4 2021 lúc 17:46

2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010

=2009^2008+2011^2010

=2009^2008+2011^2010+1-1

=(2009^2008+ 1) + (2011^2010– 1)

= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)

= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010  

Bình luận (1)
NN
Xem chi tiết
TT
12 tháng 12 2016 lúc 11:16

Chứng minh rằng: 
20092008+20112010 chia hết cho 2010
20092008 + 1) + (20112010 – 1)
= (2009 + 1)(20092007 - …) + (2011 – 1)(20112009 + …)
= 2010(20112009 + …) chia hết cho 2010

Bình luận (0)
NI
Xem chi tiết
TD
5 tháng 3 2018 lúc 21:50

A=(2009+2009^2)+(2009^3+2009^4)+...+(2009^9+2009^10)

A=[2009.(1+2009)]+[2009^3.(1+2009)]+....+[2009^9.(1+2009)]

A=2009.2010+2009^3.2010+...+2009^9.2010

A=2010(2009+2009^3+2009^5+......+2009^9)  chia het cho 2010

Bình luận (0)
NL
5 tháng 3 2018 lúc 21:54

Ta có :

\(A=2009+2009^2+2009^3+2009^4+....+2009^{10}\)

Tổng A có số số hạng là :

( 10 - 1 ) : 1 + 1 = 10 ( số hạng )

Vì \(10⋮2\)nên khi ta nhóm 2 số liên tiếp lại thành một căp thì không thừa số nào cả 

\(\Rightarrow A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+....+\left(2009^9+2009^{10}\right)\)

\(\Rightarrow A=2009.\left(1+2009\right)+2009^3.\left(1+2009\right)+....+2009^9.\left(1+2009\right)\)

\(\Rightarrow A=2009.2010+2009^3.2010+....+2009^9.2010\)

\(\Rightarrow A=2010.\left(2009+2009^3+....+2009^9\right)\)

Vì \(2009+2009^3+....+2009^9\inℤ\)nên \(2010.\left(2009+2009^3+....+2009^9\right)\inℤ\)

Vì \(2010⋮2010\)nên \(A⋮2010\)

Vậy \(A=2009+2009^2+2009^3+....+2009^{10}⋮2010\left(ĐPCM\right)\)

Bình luận (0)
LQ
Xem chi tiết
PH
15 tháng 12 2018 lúc 18:46

\(2009^{2011}+2011^{2009}=\left(2009^{2011}+1\right)+\left(2011^{2009}-1\right)\)

Ta có: \(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ.

\(a^n-b^n⋮\left(a-b\right)\forall n\inℕ^∗\)

Nên \(2009^{2011}+1⋮\left(2009+1\right),2011^{2009}-1⋮\left(2011-1\right)\)

Vậy \(2009^{2011}+1+2011^{2009}-1⋮2010\Rightarrow2009^{2011}+2011^{2009}⋮2010\)

Bình luận (0)
LQ
15 tháng 12 2018 lúc 18:49

Tại sao an+bn chia hết a+b

Bình luận (0)
PH
15 tháng 12 2018 lúc 19:03

Đấy là công thức rồi bạn

Bình luận (0)
LQ
Xem chi tiết
NT
Xem chi tiết
H24
16 tháng 4 2017 lúc 21:06

From: exoplanet

To: Nguyễn Ngọc Phương Thảo

\(2009^{2008}+2011^{2010}=\left(2009^{2008}+1\right)+\left(2011^{2010}-1\right)\)

\(=\left(2009+1\right)\left(2009^{2007}+a\right)+\left(2011-1\right)\left(2011^{2009}-b\right)\)

Bình luận (0)
LD
Xem chi tiết
VH
16 tháng 10 2017 lúc 19:05

undefined

Bình luận (3)
DA
26 tháng 10 2017 lúc 20:05

undefined

Bình luận (0)
PQ
16 tháng 12 2017 lúc 16:22

Hỏi đáp Toán

Bình luận (5)