RÚT GỌN
\(\frac{-15.46+3.8+46.12}{-24.\left(-9\right)+12.8.8.27}\)
Rút gọn
\(\frac{-15.46+3.8+46.12}{-24.\left(-9\right)+12.8.8.27}\)
Rút gọn:
\(1-\frac{2}{1.\left(1+2\right)}-\frac{3}{\left(1+2\right)\left(1+2+3\right)}-...-\frac{25}{\left(1+1+3+...+24\right)\left(1+2+3+...+24+25\right)}\)
\(1-\frac{2}{1.2.2.3:4}-\frac{3}{2.3.3.4:4}-...-\frac{25}{24.25.25.26:4}\)
\(=1-\left(\frac{4}{1.2.3}+\frac{4}{2.3.4}+\frac{4}{3.4.5}+...+\frac{4}{24.25.26}\right)\)
\(=1-2.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{24.25}-\frac{1}{25.26}\right)\)
\(=1-2\left(\frac{1}{1.2}-\frac{1}{25.26}\right)\)
\(=\frac{1}{325}\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
\(\frac{103}{3090};\frac{7314}{-18126};\frac{23.5-23.8}{414};\frac{7}{10^2-8.10^2};\frac{-13.6+12.5}{6.\left(-7\right)-\left(-4\right).6};\frac{9^{14}.25^5.\left(-8\right)^7}{\left(-18\right)^{12}.625^3.\left(-24\right)^3}\) .Ai giúp minh bài rút gọn phản số này với .Các bạn trả lời rõ ra nhé
1/30;-23/57;1031/9;-79993/100;-124;3/25
ủng hộ nha
to noi that: nguoi ta chi thich giup lam bai kho thoi chu bai nay ai di hoc cung lam dc
tai sao ban phai hoi
Rút gọn
\(\frac{9^2.\left(-4\right)^5.72}{5.\left(-6\right)^6}.\frac{6^3.81.\left(-4\right)}{\left(-8\right)^6.3^9}\)
Bài làm:
Ta có: \(\frac{9^2.\left(-4\right)^5.72}{5.\left(-6\right)^6}\cdot\frac{6^3.81.\left(-4\right)}{\left(-8\right)^6.3^9}\)
\(=\frac{3^2.-2^{10}.2^3.3^2.2^3.3^3.3^4.-2^2}{5.2^3.3^3.2^{18}.3^9}\)
\(=\frac{2^{18}.3^{11}}{2^{21}.3^{12}.5}\)
\(=\frac{1}{2^3.2.5}=\frac{1}{120}\)
\(\frac{25^5.2^{10}}{20^4.5^4}\)
=\(\frac{25^5.2^{10}}{20^4.25^2}\)
=\(\frac{25^3.2^{10}}{20^4}\)
=\(\frac{25^3.1024}{160000}\)
=\(\frac{25^3.4}{25^2}\)
=\(25.4\)
=100
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
Rút gọn A = \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{121}\right)\)
A=-3.(1-(2/3)2)(1-(2/5)2)...(1-(2/11)2)=-3.(1-2/3)(1+2/3)(1-2/5)(1+2/5)...(1-2/11)(1+2/11)=-3.\(\frac{1}{3}\).\(\frac{5}{3}\).\(\frac{3}{5}\).\(\frac{7}{5}\)...\(\frac{9}{11}.\frac{13}{11}\)
= -\(\frac{13}{11}\)
\(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)....\left(1-\frac{4}{\left(2n-1\right)^2}\right)\)Với n>=1 (Rút gọn)
\(A=\left(\frac{1^2-2^2}{1^2}\right)\left(\frac{3^2-2^2}{3^2}\right)\left(\frac{5^2-2^2}{5^2}\right)...\left(\frac{\left(2n-1\right)^2-2^2}{\left(2n-1\right)^2}\right)\)
\(=\frac{-1\cdot3}{1^2}\cdot\frac{1\cdot5}{3^2}\cdot\frac{3\cdot7}{5^2}...\cdot\frac{\left(2n-3\right)\left(2n+1\right)}{\left(2n-1\right)^2}=-\frac{1}{1}\cdot\frac{2n+1}{2n-1}=-\frac{2n+1}{2n-1}\)
Rút gọn biểu thức \({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5}\), ta được
A. \(\sqrt 3 \).
B. \(3\sqrt 3 \).
C. \(\frac{1}{{\sqrt 3 }}\).
D. 9.
\({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5} = {\left( {\frac{1}{3}} \right)^{2.\frac{1}{4}}}.{\left( {{3^{\frac{1}{2}}}} \right)^5} = {\left( {{3^{ - 1}}} \right)^{\frac{1}{2}}}{.3^{\frac{1}{2}.5}} = {3^{ - \frac{1}{2}}}{.3^{\frac{5}{2}}} = {3^{ - \frac{1}{2} + \frac{5}{2}}} = {3^2} = 9\)
Chọn D.