Những câu hỏi liên quan
ML
Xem chi tiết
TA
18 tháng 7 2023 lúc 21:01

THAM KHẢO!

Chương trình trên tính tổng các giá trị i*(i+1) trong khoảng từ 0 đến n-1 và lưu kết quả vào biến s. Để xác định độ phức tạp thời gian của chương trình này, ta cần xem xét số lần lặp của vòng for và các phép toán trong vòng lặp.

Vòng for: Vòng lặp này chạy từ 0 đến n-1, với n là 1.000. Vậy số lần lặp là n, hay 1.000 lần.

Các phép toán trong vòng lặp:

Phép gán s = s + i*(i+1): Đây là phép gán giá trị vào biến s, có độ phức tạp là O(1).

Phép toán i*(i+1): Đây là phép nhân và cộng, có độ phức tạp là O(1).

Vậy tổng độ phức tạp thời gian của chương trình là O(n), hay O(1.000)

Bình luận (0)
ML
Xem chi tiết
QL
23 tháng 8 2023 lúc 9:36

Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.

Bình luận (0)
ML
Xem chi tiết
QL
23 tháng 8 2023 lúc 9:35

Số lần so sánh giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần so sánh giữa các phần tử là cố định, không phụ thuộc vào dữ liệu đầu vào. Cụ thể, số lần so sánh trong thuật toán sắp xếp chọn là \(\dfrac{n\left(n-1\right)}{2}\), với n là số phần tử trong mảng hoặc danh sách.

Số lần hoán đổi giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần hoán đổi giữa các phần tử có thể đạt đến tối đa n-1 lần, với n là số phần tử trong mảng hoặc danh sách.

Vậy độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2), hay \(\dfrac{n\left(n-1\right)}{2}\) lần so sánh và tối đa n-1 lần hoán đổi giữa các phần tử.

Bình luận (0)
ML
Xem chi tiết
QL
23 tháng 8 2023 lúc 9:36

*Chương trình 1:

from collections import Counter

import time

n = 1000

c = 0

# Ghi lại thời điểm bắt đầu

start_time = time.time()

for k in range(n):

  c = c + 1

# Ghi lại thời điểm kết thúc

end_time = time.time()

# Tính thời gian hoàn thành

elapsed_time = end_time - start_time

# Sử dụng hàm Counter để đếm số lần lặp

counter = Counter(range(n))

# In số lần lặp

print("Số lần lặp: {}".format(counter))

# In thời gian thực thi

print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))

*Chương trình 2:

import time

n = 1000

c = 0

# Ghi lại thời điểm bắt đầu

start_time = time.perf_counter()

for k in range(n):

 for j in range(n):

  c = c + 1

# Ghi lại thời điểm kết thúc

end_time = time.perf_counter()

# Tính thời gian hoàn thành

elapsed_time = end_time - start_time

# In số lần lặp

print("Số lần lặp: {}".format(c))

# In thời gian thực thi

print("Thời gian thực thi của chương trình: {:.6f} giây".format(elapsed_time))

→Sự khác biệt độ phức tạp thời gian của 2 chương trình trên:

Độ phức tạp thời gian của chương trình 1 là O(1), còn độ phức tạp thời gian của chương trình 2 là O(n2).

Bình luận (0)
ML
Xem chi tiết
TL
19 tháng 8 2023 lúc 9:12

Tham khảo:

Hàm "Mystery(n)" sẽ trả về giá trị là r.

Độ phức tạp thời gian của chương trình này là O(n3)

Bình luận (0)
HK
Xem chi tiết
LL
25 tháng 4 2024 lúc 20:30

tính E(300)=300/log2(300), E(90000)=90000/log2(90000)

Vì độ hiệu quả tỉ lệ thuận với thời gian thực hiện

nên ta có tỉ số 0,02/E(300)=x/E(90000) (x là giá trị cần tìm).

Từ đó tính được x=3

Bình luận (0)
ML
Xem chi tiết
TL
19 tháng 8 2023 lúc 9:11

Tham khảo:

QT1. Quy tắc cộng: O(f(n)+g(n))=O(max(f(n),g(n)))

QT2. Quy tắc nhân:

- Với hằng sô: O(C.f(n))=O(f(n))

- Với hàm số: O(f(n).g(n))=O(f(n)).O(g(n))

Bình luận (0)
ML
Xem chi tiết
QL
23 tháng 8 2023 lúc 9:38

Công việc của hàm là thực hiện sắp xếp.

Độ phức tạp của thuật toán là O(n2)

Bình luận (0)
ML
Xem chi tiết
QL
23 tháng 8 2023 lúc 9:32

Thuật toán là một chuỗi các bước được thiết kế để giải quyết một vấn đề cụ thể. Một trong những yếu tố quan trọng để đánh giá hiệu suất của một thuật toán là độ phức tạp thời gian, tức là thời gian mà thuật toán mất để thực thi dựa trên kích thước đầu vào của vấn đề. Phân loại thuật toán dựa trên độ phức tạp thời gian là một phương pháp được sử dụng phổ biến để đánh giá và so sánh hiệu suất của các thuật toán khác nhau. Dưới đây là một số phân loại chính dựa trên độ phức tạp thời gian của thuật toán:

-O(1) (độ phức tạp thời gian hằng số): Đây là loại thuật toán có thời gian thực thi không thay đổi theo kích thước đầu vào. Thời gian thực thi của thuật toán này là cố định, vì vậy độ phức tạp thời gian là hằng số. Ví dụ: Truy cập vào phần tử trong mảng có kích thước cố định.

-O(log n) (độ phức tạp thời gian logarithmic): Đây là loại thuật toán có thời gian thực thi tăng theo logarit của kích thước đầu vào. Thuật toán này thường được sử dụng trong các bài toán tìm kiếm nhị phân, các thuật toán chia để trị, hoặc các thuật toán sắp xếp hiệu quả như QuickSort hoặc MergeSort.

-O(n) (độ phức tạp thời gian tuyến tính): Đây là loại thuật toán có thời gian thực thi tăng tỷ lệ trực tiếp với kích thước đầu vào. Ví dụ: Duyệt qua từng phần tử trong mảng một lần.

-O(n2) (độ phức tạp thời gian bậc hai): Đây là loại thuật toán có thời gian thực thi tăng theo bình phương của kích thước đầu vào. Ví dụ: Thuật toán sắp xếp Bubble Sort, các thuật toán tìm kiếm không hiệu quả như Linear Search trong một mảng lồng nhau.

-O(nk) (độ phức tạp thời gian bậc k): Đây là loại thuật toán có thời gian thực thi tăng theo lũy thừa của kích thước đầu

Bình luận (0)