Những câu hỏi liên quan
NA
Xem chi tiết
NT
Xem chi tiết
DV
28 tháng 6 2016 lúc 20:09

undefined

Bình luận (1)
LD
28 tháng 6 2016 lúc 22:26

b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
KY
Xem chi tiết
SS
Xem chi tiết
H24
Xem chi tiết
NO
Xem chi tiết
MA
Xem chi tiết
H24
30 tháng 6 2023 lúc 7:20

từ đề bài=> a2+2\(\sqrt{2}\)ab+2b2=2012-\(\sqrt{2}\). 2011
               =>a2+2b2-2012 =-\(\sqrt{2}\) . (2011-2ab)
               =>(a2+2b2-2012)2= 2(2011-2ab)2
=> 
(a2+2b2-2012)2≡0(mod2) mà 2 là số nguyên tố
 =>a2+2b2-2012≡0(mod2)
=> (a2+2b2-2012)2≡0(mod4) (1)
 ta có 2011-2ab là số lẻ vì 2ab chẵn=>(2011-2ab)2lẻ
=> 2(2011-2ab)chỉ chia hết cho 2 nhưng không chia hết cho 4 (2)

từ (1) và (2)=> (a2+2b2-2012)2= 2(2011-2ab)2 vô lí 
Vậy không tồn tại số nguyên a,b thoả mãn (a+b√2)2 = 2012 + 2011√2

Bình luận (1)