Những câu hỏi liên quan
NT
Xem chi tiết
NT
Xem chi tiết
MN
1 tháng 2 2020 lúc 15:30

Ta có :

\(VT=\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]\)

\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)^2}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{b^2-2bc+c^2+a^2-2ac+c^2+a^2-2ab+b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{a^2+b^2+c^2-ab-bc-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)(1)

Lại có :

\(VP=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{\left(b-c\right)\left(a-c\right)+\left(a-b\right)\left(a-c\right)-\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{ab-bc-ac+c^2+a^2-ac-ab+bc-ab+ac+b^2-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)(2)

Từ (1) và (2) \(\RightarrowĐPCM\)

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
ZZ
20 tháng 2 2019 lúc 21:16

Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(b-a\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Chứng minh tương tự,ta được:

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\left(đpcm\right)\)

Bình luận (0)
NT
Xem chi tiết
VV
Xem chi tiết
H24
5 tháng 12 2018 lúc 13:19

ta có:

\(\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b-a\right).\left(b+a\right)+\left(a-c\right).\left(a+c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\left(1\right)\)

\(\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{c^2-b^2+b^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{\left(c-b\right).\left(b+c\right)+\left(b-a\right).\left(a+b\right)}{\left(b+c\right).\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\left(2\right)\)

\(\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{a^2-c^2+c^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{\left(a-c\right).\left(a+c\right)+\left(c-b\right).\left(c+b\right)}{\left(c+a\right).\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\left(3\right)\)

từ (1),(2),(3)

\(\Rightarrow\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}\)

\(=\frac{b-a}{a+c}+\frac{a-c}{a+b}+\frac{c-b}{a+b}+\frac{b-a}{b+c}+\frac{a-c}{c+b}+\frac{c-b}{c+a}=\frac{c-a}{a+c}+\frac{b-c}{b+c}+\frac{a-b}{a+b}\Rightarrowđpcm\)

Bình luận (0)
ZZ
Xem chi tiết
H24
16 tháng 12 2019 lúc 19:51

 tự giải ak

Bình luận (0)
 Khách vãng lai đã xóa
NN
16 tháng 12 2019 lúc 19:52

Có người nhờ giải ấy @gunny :33

Bình luận (0)
 Khách vãng lai đã xóa
LT
16 tháng 12 2019 lúc 19:58

Thank You nha

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
AN
31 tháng 8 2017 lúc 14:58

Câu hỏi của Bùi Minh Quân - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
MH
Xem chi tiết
NH
19 tháng 8 2017 lúc 15:28

\(VT=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=VP\)

Bình luận (0)
TD
Xem chi tiết
BH
19 tháng 8 2017 lúc 15:32

Ta có: 

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)

Tương tự:

 \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)

Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)

=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

=> đpcm

Bình luận (0)
QT
1 tháng 12 2018 lúc 17:16

bo ko biet

Bình luận (0)
H24
Xem chi tiết
BT
14 tháng 11 2019 lúc 19:12

Ta có

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)

Tương tự ta có

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\)

\(\frac{a-b}{\left(c-b\right)\left(c-a\right)}=\frac{1}{b-c}+\frac{1}{c-a}\left(3\right)\)

Từ (1) (2) và (3) ta có

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TQ
14 tháng 11 2019 lúc 19:33

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-b}{\left(a-b\right)\left(c-a\right)}=\frac{\left(c-a\right)+\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Làm tương tự ta được:\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)

                           \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(ĐPCM\right)\)

Bình luận (0)
 Khách vãng lai đã xóa