Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
LC
14 tháng 7 2015 lúc 14:35

          Gọi ƯCLN(a,b)=d

=> a=dm,b=dn                   (m,n)=1

=> BCNN(a,b)=dmn

Theo bài ra ta có:  ƯCLN(a,b)+BCNN(a,b)=a+b

=>                                                     d+dmn=dm+dn

=>                                                  d.(1+mn)=d.(m+n)

=>                                                        1+mn=m+n

=>                                                 1+mn-m-n=0

=>                                             (mn-n)+(n-1)=0

=>                                         (n-1).m+(n-1).1=0

=>                                                (n-1).(m+1)=0

=>n-1=0=>n=1=>b=1.d=d

mà a=dm chia hết cho d=b

=>a chia hết cho b(1)

hoặc m+1=0=>m=-1=>b=-1.d=-d

mà a=dm=(-d).(-m) chia hết cho -d=b

=>a chia hết cho b(2)

Từ (1) và (2)=>a chia hết cho b

Vậy a chia hết cho b

Bình luận (0)
TL
14 tháng 7 2015 lúc 15:25

cách làm của Cương  đúng  nhưng viêt nhâm chỗ 1 + mn - m - n = 0  => (mn - n) + (n - 1) = 0 

Phải là (mn - n) + (1 - m) = 0 => n(m - 1) - (m-1) = 0 => (n-1).(m-1) = 0

Bình luận (0)
HK
Xem chi tiết
DQ
Xem chi tiết
H24
21 tháng 6 2017 lúc 9:33

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

Bình luận (0)
B1
23 tháng 8 2017 lúc 22:01

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NL
17 tháng 2 2021 lúc 10:43

\(\dfrac{2a^2-b^2}{a^2+b^2}=-\dfrac{1}{13}\)

\(\Leftrightarrow\dfrac{\left(2a^2+2b^2\right)-3b^2}{a^2+b^2}=-\dfrac{1}{13}\)

\(\Leftrightarrow2-\dfrac{3b^2}{a^2+b^2}=-\dfrac{1}{13}\)

\(\Leftrightarrow\dfrac{b^2}{a^2+b^2}=\dfrac{9}{13}\)

\(\Rightarrow1-\dfrac{b^2}{a^2+b^2}=1-\dfrac{9}{13}=\dfrac{4}{13}\)

\(\Leftrightarrow\dfrac{a^2}{a^2+b^2}=\dfrac{4}{13}\)

 

\(\dfrac{a^2}{b^2}=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{2}{3}\\\dfrac{a}{b}=-\dfrac{2}{3}\end{matrix}\right.\)

Bình luận (0)
PT
Xem chi tiết