Cho tam giác ABC nhọn (\(\widehat{ABC}=\alpha,\widehat{ACB}=\beta\)) nội tiếp đường tròn (O;R) có tâm nội tiếp I, tâm bàng tiếp J ứng với đỉnh A và đường cao AD. Trên tia AD lấy điểm K sao cho AK=2R.
a) Chứng minh: \(\widehat{OAI}=\frac{\widehat{DAO}}{2}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) và tứ giác DIJK nội tiếp ?
b) Gọi M là điểm chính giữa cung BC nhỏ, AM cắt BC tại L. Tia KM cắt (KIJ) tại điểm thứ hai N. CMR: KL vuông góc AN ?
c) Lấy Q đối xứng với J qua K. CMR: Trực tâm tam giác AJQ nằm trên đường thẳng BC ?
d) Gọi DI căt AC tại E, IK cắt BC tại F. Giả sử \(\alpha>\beta\), chứng minh rằng: Nếu IE = IF thì \(\alpha\le3\beta\) ?