so sánh \(A=\frac{20^{10}+1}{20^{10}-1};B=\frac{20^{10}-1}{20^{10}-3}\)
So sánh : \(A =\frac{20^{10} +1}{20^{10}-1} ; B =\frac{20^{10} -1}{20^{10} -3}\)
\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
\(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)
=> A < B
So sánh :
\(A=\frac{20^{10}+1}{20^{10}-1}vàB=\frac{20^{10-1}}{20^{10}-3}\)
Ta có:
\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Ta lại có:
\(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)
Hay A<B
So sánh
A = \(\frac{20^{10}+1}{20^{10}-1}và\frac{20^{10}-1}{20^{10}-3}\)
ta co:B=2010-1/2010-3>1
=>B>2010-1+2/2010-3+2=2010+1/2010-1=A
vay A<B
so sánh\(A=\frac{20^{10}+1}{20^{10}-1}vàB=\frac{20^{10}-1}{20^{10}-3}\)
A=20^10+1/20^10-1=1*2/20^10-1
B=20^10-1/20^10+3=1*2/20^10-3
vi 20^10-1>20^10-3
Suy ra 2/20^10-1<2/20^10-3
So sánh A=\(\frac{20^{10}+1}{20^{10}-1}\)và B=\(\frac{20^{10}-1}{20^{10}-3}\)
ta thấy B>1 nên B=\(\frac{20^{10}-1}{20^{10}-3}\)>\(\frac{20^{10}-1+2}{20^{100}-3+2}\)=\(\frac{20^{10}+1}{20^{10}-1}\)=A
vậy B>A
nếu ko hiểu thì tham khảo trong SBT lớp 6 bài so sánh PS ấy
So sánh : A=\(\frac{20^{10}+1}{20^{10}-1}\)và B=\(\frac{20^{10}-1}{20^{10}-3}\)
Vì \(20^{10}-1>20^{10}-3\)
\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)
vậy \(A< B\)
So sánh A và B:
\(A=\frac{20^{10}+1}{20^{10}-1};B=\frac{20^{10}-1}{20^{10}-3}\)
So sánh: \(A=\frac{20^{10}+1}{20^{10}-1};B=\frac{20^{10}-1}{20^{10}-3}\)
Ta co B>1
=>A=20^10+1'20^10-1<20^10+1/2010-3+1
=>A<20^10+1/20^10-3+1
=>A<20^10-1/20^10-3
=>A<B
Vậy A<B
So sánh: \(A=\frac{20^{10}+1}{20^{10}-1}\) và \(B= \frac{20^{10}-1}{20^{10}+1}\)
So sánh \(\left(20^{10}+1\right)^2\)và \(\left(20^{10}-1\right)^2\)
\(20^{10}-1< 20^{10}+1\)
\(\Leftrightarrow\left(20^{10}+1\right)^2>\left(20^{10}-1\right)^2\)
\(\Rightarrow\frac{20^{10}+1}{20^{10}-1}>\frac{2^{10}-1}{2^{10}+1}\)