Những câu hỏi liên quan
H24
Xem chi tiết
KT
6 tháng 4 2018 lúc 19:29

id nhu 1 tro dua

Bình luận (0)
Xem chi tiết
LL
Xem chi tiết
TN
3 tháng 12 2017 lúc 21:04

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

Bình luận (0)
PL
Xem chi tiết
TD
13 tháng 7 2017 lúc 14:46

A=24783,14746B=49566,29188

Vậy A<B

Bình luận (0)
HH
14 tháng 7 2017 lúc 14:17

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

Bình luận (0)
H24
Xem chi tiết
CD
16 tháng 2 2020 lúc 16:55

Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)

Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)

Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)

\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)

hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))

Vậy \(A>B\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
A2
Xem chi tiết
H24
22 tháng 3 2019 lúc 20:44

Ta có 

A= \(\frac{2017^{2018}-3+4}{2017^{2018}-3}=1+\frac{4}{2017^{2018}-3}\)

B= \(1+\frac{4}{2017^{2018}-5}\)

vậy A > B

Bình luận (0)
Xem chi tiết
LN
11 tháng 9 2020 lúc 16:16

A/B>1/2018

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 9 2020 lúc 16:24

\(\frac{A}{B}>\frac{1}{2018}\)

Bình luận (0)
 Khách vãng lai đã xóa
VP
Xem chi tiết
IY
1 tháng 5 2018 lúc 8:10

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

Bình luận (0)