1.cmr ko có số hữu tỉ nào bình phương = 5;=12
2. cmr:bình phương của một số hữu tỉ là 1 số nguyên thì số đó là số nguyên
CMR không có số hữu tỉ nào bình phương bằng 2.
đề sai nhé, có số hữu tỉ bình phương = 2 mà
Giả sử tồn tại số hữu tỉ có bình phương bằng 2, là \(\frac{m}{n}\)( ƯCLN(m;n) = 1 )
\(\Rightarrow\frac{m^2}{n^2}=2\)
\(\Rightarrow m^2=2n^2\)
Mà ƯCLN(m;n)=1 nên \(m^2\)chia hết cho 2
\(\Rightarrow m\)chia hết cho 2 ( vì 2 là số nguyên tố )
Đặt \(m=2k\)
\(\Rightarrow4k^2=2n^2\)
\(\Rightarrow n^2=2k^2\)
Tương tự, n phải chia hết cho 2
DO đó ƯCLN(m;n) = 2, trái với điều kiện.
Vậy ...
GS có số hữu tỉ a
Ta có: a^2=2
=> a^2 - 2=0
=> a^2 - (căn bậc hai của 2)^2=0
=>(a+căn bậc hai của 2)*(a-căn bậc hai của 2)=0
=>a+căn bậc hai của 2=0 hoặc a-căn bậc hai của 2=0
Với a+căn bậc hai của 2 = 0 Với a-căn bậc hai của 2 = 0
=> a = -(căn bậc hai của 2) => a = căn bậc hai của 2
Vì căn bậc hai của 2 và -(căn bậc hai của 2) không phải là một số hữu tỉ
a không phải là số hữu tỉ (trái với đề bài)
=> DPCM
CMR không có số hữu tỉ nào bình phương bằng 2.
Giả sử căn bậc 2 của 2 là 1 số hữu tỉ ( nếu kết quả ra số hữu tỉ thì điều giả sử là đúng còn nếu ko thì điều giả sử là sai)
Vậy căn 2 = a/b
với a,b thuộc Z, b khác 0 và a/b là 1 phân số tối giản.
bình phương hai vế ta được: 2=a^2/b^2
suy ra: a^2=2b^2
Vậy a^2 là số chẵn, suy ra a là số chẵn.
nên a=2m, m thuộc Z(m là 1 tham số), ta được:
(2m)^2=a^2=2b^2
suy ra: b^2=(2m)^2/2=2m^2
Vậy b^2 là số chẵn suy ra b là số chẵn.
nên b=2n, n thuộc Z(n là tham số)
Như vậy: a/b = 2m/2n ko phải là phân số tối giản, trái với giả sử ban đầu.
Vậy căn bậc 2 của 2 là 1 số vô tỉ.
Giả sử tồn tại số hữu tỉ có bình phương bằng 2, là \(\frac{m}{n}\) ( ƯCLN(m;n) = 1 )
\(\Rightarrow\frac{m^2}{n^2}=2\)
\(\Rightarrow m^2=2n^2\)
Mà ƯCLN(m;n)=1 nên \(m^2\) chia hết cho 2
⇒mchia hết cho 2 ( vì 2 là số nguyên tố )
Đặt \(m=2k\)
\(\Rightarrow4k^2=2n^2\)
\(\Rightarrow n^2=2k^2\)
Tương tự, n phải chia hết cho 2
DO đó ƯCLN(m;n) = 2, trái với điều kiện.
Vậy ...
CMR không có số hữu tỉ nào mà bình phương bằng 3
#)Giải :
Giả sử có số hữu tỉ \(\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)mà bình phương bằng 3
Ta có : \(\left(\frac{a}{b}\right)^2=3\)
\(\Leftrightarrow a^2=3b^2\)
\(a^2⋮3^2\Rightarrow3b^2⋮3^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
Vì \(a⋮3\)và \(b⋮3\)nên \(ƯCLN\left(a,b\right)\ge3\)( vô lí )
Vậy không có số hữu tỉ nào mà bình phương bằng 3
#~Will~be~Pens~#
Link nek
https://olm.vn/hoi-dap/detail/106839914043.html
Hok tốt
Mấy bạn giúp mình bài này với :
CMR : không có số hữu tỉ nào bình phương = 3
tick đi mh trả lời cho*có lời giải*
bạn lên google thử chứ tụi này mới lớp 6 ah
Vì số có bình phương bằng 3 là \(\sqrt{3}\) hoặc \(-\sqrt{3}\)
Mà \(\sqrt{3}\) và \(-\sqrt{3}\) không phải là số hữu tỉ nên không có số hữu tỉ nào bình phương bằng 3
Vậy không có số hữu tỉ nào bình phương bằng 3
giả sử a,b là 2 số hữu tỉ dương, ko phải là bình phương của bất kì số hữu tỉ nào.
CMR Nếu r và s là 2 số hữu tỉ sao cho t=r\(\sqrt{a}\)+s\(\sqrt{b}\) la 1 so huu ti thi t=0
Giả sử a,b thuộc Q,a,b>0 và a,b không là bình phương của 1 số hữu tỉ nào.
CMR: Nếu r và s là 2 số hữu tỉ sao cho t= rcăna + scănb là một số hữu tỉ thì t =0
chứng minh rằng không có số hữu tỉ nào bình phương bằng 5
Gs bình phương của số hữu tỉ a bằng 5.
Ta có: a^2=5
=> a^2 - 5 = 0
=> a^2 - (cbh của năm)^2 = 0
=> (a - cbh của 5)*(a+cbh của 5)=0
=> a-(cbh của 5) bằng 0 => a=cbh của 5
hoặc a + cbh của 5 bằng 0 => a= -(cbh của 5)
Vì cbh của 5 và -(cbh của 5) là 2 số vô tỉ
=> trái vs điều gs
=> DPCM
Cho x,y nguyên dương khác 0 thỏa mãn x^5+y^5=2x^3y^3. Cmr 1-1/xy là Bình phương của một số hữu tỉ.
Sao có 2 bạn tl mik mà nó ko hiện ra vậy
Cho 31 số hữu tỉ biết 5 số hữu tỉ bât kì nào cũng có tich băng 1 số dương cmr tích của 31 số hữu tỉ đó băng 1 số dương