Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với các mặt phẳng ( α ) : x = 1 , ( β ) : y = - 1 , ( γ ) : z = 1 . Bán kính của mặt cầu (S) bằng
A. 33
B. 1
C. 3 2
D. 3
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1); B(3;2;3) , có tâm thuộc mặt phẳng (P):x-y-3=0, đồng thời có bán kính nhỏ nhất, hãy tính bán kính R thuộc mặt cầu (S)?
A. 1
B. 2
C. 2
D. 2 2
Trong không gian với hệ trục tọa độ Oxyz cho điểm A(2;-2;2) và mật cầu (S): x 2 + y 2 + ( z - 1 ) 2 = 4 . Điểm M di chuyển trên mặt cầu (S) đồng thời thỏa mãn O M → . A M → = 6 . Điểm M luôn thuộc mặt phẳng nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, cho ba điểm
A 0 ; 1 ; 1 , B 3 ; 0 ; - 1 , C 0 ; 21 ; - 19 và mặt cầu
S : x - 1 2 + y - 1 2 + z - 1 2 = 1 ,
M a ; b ; c là điểm thuộc mặt cầu (S) sao cho biểu thức
T = 3 M A 2 + 2 M B 2 + M C 2 đạt giá trị nhỏ nhất. Tính tổng a + b + c
A. a + b + c = 0
B. a + b + c = 12
C. a + b + c = 12 5
D. a + b + c = 14 5
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng Δ : x 1 = x + 3 1 = z 2 . Biết rằng mặt cầu (S) có bán kính bằng 2 2 và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I
A. I(1;-2;2), I(5;2;10)
B. I(1;-2;2), I(0;-3;0)
C. I(5;2;10), I(0;-3;0)
D. I(1;-2;2), I(-1;2;-2)
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng đi
qua điểm A(1;2;-3) có vectơ pháp tuyến n → = ( 2 ; - 1 ; 3 ) là
A. 2x - y + 3z + 9 = 0
B. 2x -y + 3z - 4 = 0
C. x - 2y - 4 = 0
D. 2x - y + 3z + 4 = 0
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng đi qua điểm A(1;2;-3) có vectơ pháp tuyến n → = ( 2 ; - 1 ; 3 ) là
A. 2x - y + 3z + 9 = 0
B. 2x - y + 3z - 4 = 0
C. x - 2y - 4 = 0
D. 2x - y + 3z + 4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S m ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - m ) 2 = m 2 4 và hai điểm A(2;3;5), B(1;2;4). Tìm giá trị nhỏ nhất của m để trên ( S m ) tồn tại điểm M sao cho M A 2 - M B 2 = 9 .
A. m=1
B. m= 3 - 3
C. m= 8 - 4 3
D. m= 4 - 3 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng (P): 2x + y - 4z + 1 =0. Đường thẳng (d) đi qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số của đường thẳng d.
A. x = 1 + 5 t y = 2 - 6 t z = 3 + t
B. x = t y = 2 t z = 2 + t
C. x = 1 + 3 t y = 2 + 2 t z = 3 + t
D. x = 1 - t y = 2 + 6 t z = 3 + t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình: 3x+4y+2z+4=0 và điểm A(1;-2;3). Tính khoảng cách d từ A đến (P)
A. d = 5 9
B. d = 5 29
C. d = 5 29
D. 5 3