Những câu hỏi liên quan
PB
Xem chi tiết
CT
14 tháng 4 2018 lúc 8:39

Đáp án D

Bình luận (0)
NT
Xem chi tiết
AN
31 tháng 5 2017 lúc 9:47

Theo Vi et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)

Theo giả thuyết thì:

\(x_1^2+x_2^2=2x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)

\(\Leftrightarrow\frac{b^2}{a^2}-\frac{4c}{a}=0\)

\(\Leftrightarrow b^2-4ac=0\)

Vậy ta có ĐPCM

Bình luận (0)
NQ
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 12 2018 lúc 16:40

Đáp án: A

Bước 1 sai  vì giả sử phản chứng sai, phải giả sử phương trình vô nghiệm và a, c trái dấu.

Bình luận (0)
OO
Xem chi tiết
TD
14 tháng 4 2020 lúc 16:54

gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\)  và \(x_1x_2=b+1\)

Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)

\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)

\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 10:38

Mệnh đề \(P \Rightarrow Q\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\).”

Mệnh đề \(Q \Rightarrow P\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\) thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt.”

Bình luận (0)
SY
Xem chi tiết
H24
7 tháng 7 2018 lúc 15:21

3700 hoặc 3699

Bình luận (0)
SY
7 tháng 7 2018 lúc 16:58

đoạn sau là x2-ax-1/(2a2)=0 nha, viết thiếu.

@nguyenthanhtuan cái này là chứng minh mà bạn.

Bình luận (0)
TT
Xem chi tiết
HP
30 tháng 11 2020 lúc 23:28

Tham khảo:

Câu hỏi của Nguyễn Ngọc Ánh - Toán lớp 10 | Học trực tuyến

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
25 tháng 3 2018 lúc 7:33

Giả sử  x 1 ,   x 2  là hai nghiệm của phương trình bậc hai a x 2  + bx + c = 0 có ∆’ = 0

Do đó, phương trình có nghiệm kép Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chọn B

Bình luận (0)