Cho hàm số f(x). Biết hàm số y = f'(x) có đồ thị như hình bên. Trên đoạn [-4;3], hàm số g(x) = 2f(x) + 1 - x 2 đạt giá trị nhỏ nhất tại điểm
A. x 0 = -4
B. x 0 = -1
C. x 0 = 3
D. x 0 = -3
Cho hàm số f(x). Biết hàm số y=f '(x) có đồ thị như hình bên. Trên đoạn [-4;3], hàm số g ( x ) = 2 f ( x ) + ( 1 - x ) 2 đạt giá trị nhỏ nhất tại điểm
A..
B..
C..
D..
Chọn B
Ta có
.
.
Dựa vào hình vẽ ta có:.
Và ta có bảng biến thiên
Suy ra hàm số đạt giá trị nhỏ nhất tại điểm
Cho hàm số y=f(x) có đạo hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y=f’(x),(y=f’(x) liên tục trên R). Xét hàm số g x = f x 2 - 2 . Mệnh đề nào dưới đây sai?
A. Hàm số g(x) nghịch biến trên (-∞;-2).
B. Hàm số g(x) đồng biến trên (2;+∞).
C. Hàm số g(x)nghịch biến trên(-1;0).
D. Hàm số g(x) nghịch biến trên (0;2).
Cho hàm số f(x). Biết hàm số y = f '(x) có đồ thị như hình bên. Trên đoạn [-4;3] hàm số g(x) = 2f(x) + 1 - x 2 đạt giá trị nhỏ nhất tại điểm
A. x 0 = - 4
B. x 0 = - 1
C. x 0 = 3
D. x 0 = - 3
Đáp án B
Ta có g x = 2 f x + 1 - x 2 → g ' x = 2 f ' x - 2 1 - x ; g ' x = 0 ⇔ f ' x = 1 - x
Đồ thị hàm số y = f '(x) cắt đường thẳng y = 1 - x tại x = -4, x = -1, x = -2
Đồng thời g '(x) đổi dấu từ - sang + khi đi qua x = - 1 → m i n - 4 ; 3 g x = g - 1 .
Cho hàm số f(x). Biết hàm số y = f'(x) có đồ thị như hình bên.
Trên đoạn [-4;3] hàm số g ( x ) = 2 f ( x ) + 1 - x 2 đạt giá trị nhỏ nhất tại điểm
Cho hàm số f (x) có đồ thị của hàm số f'(x) như hình vẽ bên.
Biết f(-1)=f(4)=0. Hàm số y = ( f ( x ) ) 2 nghịch biến trên khoảng nào dưới đây ?
A. (-1;0).
B. (1;4).
C. ( - ∞ ; 1 ) .
D. ( 4 ; + ∞ ) .
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là
A. 5.
B. 7.
C. 9.
D. 8.
Cho hàm số y=f(x) có đạo hàm, liên tục trên đoạn [-3;3] và đồ thị hàm số y=f' (x) như hình vẽ bên. Biết f(1)=6 và g(x)=f(x)- ( x + 1 ) 2 2 .
Kết luận nào sau đây là đúng
A. Phương trình g(x)=0 có đúng hai nghiệm thuộc [-3;3].
B. Phương trình g(x)=0 có đúng một nghiệm thuộc [-3;3].
C. Phương trình g(x)=0 không có nghiệm thuộc [-3;3].
D. Phương trình g(x)=0 có đúng ba nghiệm thuộc [-3;3].
Cho hàm số y = f(x) liên tục trên R có đồ thị y = f'(x) như hình vẽ bên. Biết f 1 = 0 . Xác định số điểm cực trị của đồ thị hàm số y = |f(x)|.
A. 5
B. 6
C. 4
D. 3
Đáp án D.
Đồ thị hàm số y = f(x) có dạng:
Đồ thị hàm số y = |f(x)| có dạng:
→ Hàm số y = |f(x)| có 3 điểm cực trị.
Cho hàm số y = f(x) có đồ thị của đạo hàm f'(x) như hình vẽ bên dưới. Giá trị lớn nhất của hàm số y = f(x) trên đoạn [-1;3] là
A. f(0)
B. f(-4)
C. f(1)
D. f(2)
Chọn A
+ Từ đồ thị của đạo hàm ta lập được bảng biến thiên như sau
+ Dựa vào BBT ta suy ra giá trị lớn nhất của hàm số trên đoạn [-1;3] là f(0)