Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(1;0;1) và chứa trục Ox
A. x - 1 = 0
B. y = 0
C. z - 1 = 0
D. x + z - 1 = 0
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2 ;-1 ;3) và song song với mặt phẳng (Q):
A.
B. x - 2y + 3z - 15 = 0
C. 3x - 6y + 2z - 18 = 0
D. 3x - 6y + 2z + 18 = 0
Đáp án C
Phương trình mặt phẳng (Q) viết lại dưới dạng: 3x - 6y + 2z - 6 = 0
Suy ra đáp án B sai. Trong ba đáp án còn lại chỉ có mặt phẳng ở đáp án C đi qua điểm A.
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua ba điểm A(1;0;1), B(0;-1;-3), C(2;1;3)
A. x - y - 1 = 0
B. x - y + 1 = 0
C. x + z - 2 = 0
D. x + y - 1 = 0
Đáp án A
Từ giả thiết ta suy ra:
Từ đó suy ra phương trình của mặt phẳng (P) là: 1(x - 1) - 1(y - 0) = 0 ⇔ x - y - 1 = 0
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua ba điểm A(1 ;0 ;1), B(0 ;-1 ;-3), C(3 ;2 ;5).
A. x - y - 1 = 0
B. x - y + 1 = 0
C. x + z - 2 = 0
D. x + y - 1 = 0
Đáp án A
Từ giả thiết ta suy ra
Mặt khác (P) đi qua điểm A(1 ;0 ;1) nên ta có phương trình của mặt phẳng (P) là : 1(x - 1) - 1(y - 0) = 0 <=> x - y - 1 = 0.
Vậy đáp án đúng là A.
Trong không gian Oxyz, lập phương trình mặt phẳng (P) đi qua điểm A(2;-1;-2) và song song với mặt phẳng (Q): 2x - y + 2z = 0
A. 2x - y + 2z - 1 = 0
B. 2x - y + 2z + 9 = 0
C. 2x - y - 2z + 1 = 0
D. 2x - y + 2z + 1 = 0
Đáp án A
Vì mặt phẳng (P) song song với mặt phẳng (Q): 2x – y + 2z = 0 nên mặt phẳng (P) có dạng: 2x – y + 2z + d = 0
Mà mặt phẳng (P) đi qua điểm A(2; -1; -2) nên:
2.2 –(-1) + 2.(-2) + d = 0 nên d = -1
Vậy phương trình mặt phẳng (P) là: 2x – y + 2z – 1= 0
Trong không gian Oxyz, lập phương trình mặt phẳng (P) đi qua điểm A(-2 ;1 ;-2) và vuông góc với trục Oz.
A. x + y + 1 = 0
B. -2x + y - z + 1 = 0
C. z - 1 = 0
D. z + 2 = 0
Đáp án D
Do mặt phẳng (P ) vuông góc trục Oz nên mặt phẳng này nhận vecto k → = (0; 0; 1) làm vecto pháp tuyến.
Lại có:
Điểm A(-2 ; 1 ; -2) thuộc mặt phẳng (P) nên phương trình (P): 0(x + 2) + 0( y - 1) + 1(z + 2)= 0 hay z + 2= 0
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua hai điểm A(1;0;1), B(2;1;3), đồng thời vuông góc với mặt phẳng (Q): x + y - 3z = 0
A. x - y - 1 = 0
B. x + y - 1 = 0
C. x + z - 1 = 0
D. x + y - 3z + 2 = 0
Đáp án A
Từ giả thiết suy ra:
Từ đó suy ra phương trình của mặt phẳng (P) là:
1(x - 1) - 1(y - 0) + 0(z - 1) = 0 ⇔ x - y - 1 = 0
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2 ;1 ;-3), vuông góc với mặt phẳng (Q): x + y - 3z = 0 đồng thời (P) song song với trục Oz.
A. x + y - 3 = 0
B. x - y - 1 = 0
C. 2x + y - 3z - 1 = 0
D. x - y + 1 = 0
Đáp án B
Mặt khác (P) đi qua điểm A(2 ;1 ;-3) nên ta có phương trình của mặt phẳng (P) là: 1(x - 2) - 1(y - 1) = 0 <=> x - y - 1 = 0.
Vậy đáp án đúng là B
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2;1;3), vuông góc với mặt phẳng (Q): x + y - 3z = 0 đồng thời (P) song song với trục Oz
A. x + y - 3 = 0
B. x - y - 1 = 0
C. 2x + y + 3z - 1 = 0
D. x - y + 1 = 0
Đáp án B
Từ giả thiết ta suy ra:
Mặt khác mặt phẳng (P) đi qua điểm A(2;1;3) nên ta có phương trình của mặt phẳng (P) là: 1(x- 2) - 1(y - 1) = 0 ⇔ x - y - 1 = 0
Trong không gian Oxyz, cho điểm A(2;-3;4). Lập phương trình mặt phẳng (P) đi qua các hình chiếu vuông góc của điểm A trên các trục tọa độ:
A. 2x-3y+4z-29=0
B. 2x-3y+4z-1=0
C. x 2 + y - 3 + z 4 = 0
D. x 2 + y - 3 + z 4 = 1
Đáp án D
Với điểm A(2;-3;4). Hình chiếu của A trên 3 trục tọa độ lần lượt là:
B(2; 0; 0); C( 0; -3; 0) và D( 0; 0; 4).
Phương trình mặt phẳng (BCD) là: