Những câu hỏi liên quan
LP
Xem chi tiết
LB
1 tháng 1 2016 lúc 21:13

ko lam duk dung co xin l.i.k.e

Bình luận (0)
LP
Xem chi tiết
LP
2 tháng 1 2016 lúc 19:52

Nguyễn Huy Thắng, uk, bài tập tết

Bình luận (0)
CH
Xem chi tiết
PB
Xem chi tiết
CT
19 tháng 6 2018 lúc 10:48

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 3 2018 lúc 1:55

Đáp án là A

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 8 2017 lúc 5:15

Đáp án B

Bình luận (0)
H24
Xem chi tiết
AH
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Bình luận (0)
AH
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Bình luận (0)
AH
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 7 2018 lúc 9:08

f(x) = | x 2 − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) =  x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 3 2018 lúc 6:40

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - - 1  =  2 1  = 2, y(0) =  2 0  = 1, y(1) =  2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

Bình luận (0)