Những câu hỏi liên quan
NT
Xem chi tiết
NQ
9 tháng 1 2016 lúc 10:44

Vì x,y nguyên mà |x| + |y| = 2

<= > x , y \(\le\) 2

TH1: |x| = 0 ; |y| = 2 => có 2 trường hợp

TH2: |x| = 1 ; |y| = 1 => có 4 trường hợp

TH3: |x| = 2 ; |y| = 0  => Có 2 trường hợp

Vậy có tất cả: 2 + 4 + 2=  8 trường hợp 

Bình luận (0)
NT
9 tháng 1 2016 lúc 10:43

TH1 : x = 1 và y = 2

TH2 : x = -1 và y = -1

TH3 : x = -2 hoặc 2 và y = 0

TH4 : x= 0 và y = -2 hoặc 2

**** đúng nha

Bình luận (0)
TN
9 tháng 1 2016 lúc 10:46

|x|,|y| có thể lần lượt là 0;2, 1;1 hoặc 2;0

Vậy có 3 cặp (x,y) thỏa mãn

 

Bình luận (0)
NT
Xem chi tiết
BN
7 tháng 1 2016 lúc 21:08

Các cặp số(x,y) thỏa mãn là:0,2;1,1;-1,-1;-2,0 hết

Bình luận (0)
NT
Xem chi tiết
PH
8 tháng 1 2016 lúc 12:06

TH1 : x=1 và y=2    

TH2 : x= -1 và y= -1

TH3 :x=-2 hoặc 2 và y=0

TH4 : x=0 và y = -2 hoặc 2

Bình luận (0)
LQ
8 tháng 1 2016 lúc 14:58

1;1    1;-1     -1;1   -1;-1 ban thieu

Bình luận (0)
QM
Xem chi tiết
MS
Xem chi tiết
DL
Xem chi tiết
DL
Xem chi tiết
NV
Xem chi tiết
DH
3 tháng 8 2021 lúc 20:37

\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)

\(\Leftrightarrow\frac{9+xy}{3x}=\frac{5}{6}\)

\(\Rightarrow54+6xy=15x\)

\(\Leftrightarrow x\left(5-2y\right)=18\)

Vì \(x,y\)là số nguyên nên \(x,5-2y\)là các ước của \(18\), mà \(5-2y\)là số lẻ. 

Ta có bảng giá trị: 

5-2y-9-3-1139
x-2-6-181862
y74321-2
Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
CC
Xem chi tiết
2U
31 tháng 12 2019 lúc 15:17

Xét điểm M(a;b) bất kì nằm trog ( tính cả biên ) của hình tròn ( \(C_n\)) : \(x^2+y^2\le n^2\)

Mỗi điểm M như vậy tương ứng với 1 và chỉ 1 hình vuông đơn vị S(M) mà M là đỉnh ở goc trái , phía dưới 

Từ đó suy ra \(S_n\)= số hình vuông S (M) = tổng diện tích của S(M) với \(M\in\left(C_n\right)\)

Rõ ràng các hình vuông S(M) , với \(M\in\left(C_{ }_n\right)\)đều nằm trog hình tròn \(\left(C_{n+\sqrt{2}}\right):x^2+y^2\le\left(n+\sqrt{2}\right)^2\)

Do đó : \(S_n\le\pi\left(n+\sqrt{2}\right)^2\)(1) 

Tương tự như vậy , ta thấy các hình vuông S(M) , với \(M\in\left(C_n\right)\)phủ kín hình tròn

\(\left(C_{n-\sqrt{2}}\right):x^2+y^2\le\left(n-\sqrt{2}\right)^2\)vì thế \(S_n\ge\pi\left(n-\sqrt{2}\right)^2\)(2)

Từ (1) và (2) suy ra \(\sqrt{\pi}\left(n-\sqrt{2}\right)\le\sqrt{S_n}\le\sqrt{\pi}\left(n+\sqrt{2}\right)\)

suy ra \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\le\frac{\sqrt{S_n}}{n}\le\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)\)

Mà lim \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\)= lim\(\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)=\sqrt{\pi}\)nên lim \(\sqrt{\frac{S_n}{n}}=\sqrt{\pi}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
31 tháng 12 2019 lúc 21:30

@ Huy @ Bài làm đánh đẹp lắm. Nhưng cô cũng không hiểu được rõ  ràng là toán 6 sao có lim, phương trình đường tròn;...                      ( lớp 11 , 12 ) ở đây.

 Lần sau chú ý giải Toán 6 không cần dùng kiến thức quá cao nhé.

Tuy nhiên đề bài bạn thiếu. Lần sau em có thể sửa lại đề bài trước rồi hẵng làm nha.

Bình luận (0)
 Khách vãng lai đã xóa