Những câu hỏi liên quan
SL
Xem chi tiết
SL
Xem chi tiết
SL
Xem chi tiết
HN
6 tháng 10 2016 lúc 21:26

Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(

Bình luận (2)
SL
6 tháng 10 2016 lúc 21:36

mik đăng cái khác rồi đó

 

Bình luận (0)
NN
22 tháng 11 2016 lúc 21:20

khó đọc

Bình luận (0)
SL
Xem chi tiết
NN
Xem chi tiết
SG
22 tháng 11 2016 lúc 21:28

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 

Bình luận (0)
SG
22 tháng 11 2016 lúc 21:28

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 

Bình luận (0)
NH
Xem chi tiết
DM
Xem chi tiết
CH
Xem chi tiết
TH
Xem chi tiết
LT
Xem chi tiết