Cho các số x, y, z thoả mãn đồng thời:
x + y + z = 1; x2 + y2 + z2 = 1 và x3 + y3 + z3 = 1
Tính tổng: S = x2013 + y2015 + z2017 + 2019
CMR ko tồn tại các số x,y,z đồng thời thoả mãn |y-z| > |x| ; |z-x| > |y| ; |x-y| > |z|
CMR ko tồn tại các số x,y,z đồng thời thoả mãn |y-z| > |x| ; |z-x| > |y| ; |x-y| > |z|
CMR ko tồn tại các số x,y,z đồng thời thoả mãn |y-z| > |x| ; |z-x| > |y| ; |x-y| > |z|
Tìm các số nguyên x, y, z đồng thời thoả mãn các điều kiện sau :
x2 = y - 1 ; y2 = z -1 ; z2 = x - 1
Có x, y, z thuộc Z đồng thời thoả mãn các điều kiện sau đây không
x^3 + x*y*z = 957
y^3 + x*y*z = 759
z^3 + x*y*z = 579
tồn tại hay không bộ ba các số nguyên x y z đồng thời thoả: x^2 = y-1; y^2 = z-1; z^2 = x-1
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Có các số nguyên x;y;z nào thoả mãn đồng thời cắc đẳng thức sau ko ?
x^3+xyz=975
y^3+xyz=795
z^3+xyz=579
giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho
xét x^3 + xyz= 975 ta có
x^3 + xyz= x(x^2+yz)=975 => x là số lẻ
tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ
x là số lẻ => x^3 là số lẻ
=> x^3+xyz là số chẵn
trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho
Cho x,y,z là các số dương thoả mãn (x+y) (y+z) (z+x) = 8xyz