Những câu hỏi liên quan
TP
Xem chi tiết
H24
Xem chi tiết
NA
27 tháng 1 2018 lúc 21:30

a) \(ĐKXĐ:\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}\)

     \(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)

          \(=\left[\frac{\left(x+1\right)\left(x+2\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right]:\frac{2\left(1-2x\right)}{x+1}-\frac{3x+1-x^2}{3x}\)

       \(=\frac{\left(x+1\right)\left(x+2\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

       \(=\frac{2-8x^2}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

      \(=\frac{1+2x-3x-1+x^2}{3x}\)

      \(=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

Bình luận (0)
NA
27 tháng 1 2018 lúc 22:08

b)\(\text{Với }x\ne0,x\ne-1,x\ne\frac{1}{2}\text{ ta có:}\)

  \(\text{Để A< 0\Leftrightarrow}\frac{x-1}{3}< 0\Rightarrow x-1< 0\Leftrightarrow x< 1\)

Bình luận (0)
KT
27 tháng 1 2018 lúc 22:25

Dựa theo kết quả câu  a)   mk lm tiếp câu  b)   nhé:

b)  ĐKXĐ:  \(x\ne0;\)\(x\ne-1;\)\(x\ne0,5\)

 \(A< 0\) thì   \(\frac{x-1}{3}< 0\)

  \(\Leftrightarrow\)\(x-1< 0\)   (do  \(3>0\))

\(\Leftrightarrow\)\(x< 1\)

Vậy  với    \(x< 1\)thỏa mãn  ĐKXĐ   thì   \(A< 0\)

Bình luận (0)
HH
Xem chi tiết
LL
Xem chi tiết
NN
26 tháng 11 2017 lúc 16:59

) \(\dfrac{x^3+8y^3}{2y+x}\)

\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)

\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)

\(=x^2+2xy+4y^2\)

b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)

\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)

\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)

\(=\dfrac{3a-1}{2\left(a-4\right)}\)

c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)

\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2}\)

d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)

\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)

\(=x^2-10x+25+7x+14-x^2-2x\)

\(=39-5x\)

e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)

\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)

\(=\dfrac{3x+2x+1}{x-2}\)

\(=\dfrac{5x+1}{x-2}\)

h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)

\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

Bình luận (3)
TU
Xem chi tiết
TH
30 tháng 11 2016 lúc 21:21

a. 2x

b.\({3x}\over x^2-1\)

Bình luận (0)
NH
Xem chi tiết
BH
Xem chi tiết
QT
Xem chi tiết
TP
12 tháng 1 2019 lúc 19:14

a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)

\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)

\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2x+1-3x-1+x^2}{3x}\)

\(A=\frac{x^2-x}{3x}\)

\(A=\frac{x\left(x-1\right)}{3x}\)

\(A=\frac{x-1}{3}\)

b) Thay x = 4 ta có :

\(A=\frac{4-1}{3}=\frac{3}{3}=1\)

c) Để A thuộc Z thì \(x-1⋮3\)

\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)

\(\Rightarrow x\in\left\{1;4;7;...\right\}\)

Vậy.....

Bình luận (0)
IS
27 tháng 2 2020 lúc 11:17

Cho Bt 

a,Tìm điều kiện xác định và rút gọn bt A

b,Tính giá trị bt A tại x=4

c,tìm x thuộc Z để a thuộc Z

Bình luận (0)
 Khách vãng lai đã xóa
1A
Xem chi tiết
EC
19 tháng 9 2019 lúc 14:38

a) Ta có: A = \(\frac{x^3-3x^2-x+3}{x^2-3x}=\frac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\frac{\left(x^2-1\right)\left(x-3\right)}{x\left(x-3\right)}=\frac{x^2-1}{x}\)

b) Với x = 2 => A = \(\frac{2^2-1}{2}=\frac{4-1}{2}=\frac{3}{2}\)

Bình luận (0)
NC
19 tháng 9 2019 lúc 14:51

Như này là đề bài thiếu điều kiện hay là bạn conan làm quên điều kiện. :)

Đề bài thiếu điều kiện:

với \(x\ne0;x\ne3\)

Bình luận (0)