Những câu hỏi liên quan
NH
Xem chi tiết
DA
Xem chi tiết
NL
Xem chi tiết
H24
9 tháng 4 2020 lúc 14:20

Từ x + 2y =3 => x = 3 - 2y.Thay x = 3 -2y vào biểu thức E ,ta có : 

 E = x2 +2y2 =(3-2y)2 + 2y2 =6y2 -12y + 9

      = \(6.\left(y^2-2y+\frac{3}{2}\right)=6.\left[\left(y^2-2y+1\right)+\frac{1}{2}\right]=6.\left[\left(y-1\right)^2+\frac{1}{2}\right]=6\left(y-1\right)^2+3\)

Do (y-1)2 \(\ge\)0=> E\(\ge\)3.

Vậy MINE khi y = 1,x =3 - 2.1 =1

Bình luận (0)
 Khách vãng lai đã xóa
TC
9 tháng 4 2020 lúc 18:43

x+2y=3⇒y=3−x2⇒y=3−x2(1)

Thế (1) vào E ta được : E=x22+x2−6x+92x2−6x+92

⇔2E=2x2+x2−6x+9⇔2E=3x2−6x+9⇔2E=2x2+x2−6x+9⇔2E=3x2−6x+9

⇔2E=3(x2−2x+1+2)⇔E=32[(x−1)2+2]⇔2E=3(x2−2x+1+2)⇔E=32[(x−1)2+2]

⇔E=32(x−1)2+3⇔E=32(x−1)2+3 . Do (x-1)22≥≥0⇒32(x−1)2≥0⇒32(x−1)2≥0⇒32(x−1)2+3≥3⇔E≥3⇒32(x−1)2+3≥3⇔E≥3 . Hay Emin=3Emin=3 .

Vậy giá trị nhỏ nhất của E là 3 ⇔{x=1y=1

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
28 tháng 6 2018 lúc 10:44

Bình luận (0)
YK
Xem chi tiết
BV
6 tháng 6 2017 lúc 15:23

Thì ra cx có ng k hiểu thầy nói gì giống mình

Bình luận (0)
H24
Xem chi tiết
LP
25 tháng 8 2023 lúc 21:18

Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\) 

\(P=x^2+y^2+2xy-2x+2y+1\)

+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:

\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\)

suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.

+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)

Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)

Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.

Vậy \(x=y\) (đpcm)

(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)

 

Bình luận (0)
JF
Xem chi tiết
PV
Xem chi tiết
ND
Xem chi tiết
AH
10 tháng 12 2023 lúc 22:22

Lời giải:

Áp dụng BĐT AM-GM:
$M\geq 2\sqrt{\frac{1}{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\frac{x^2y^2+1}{xy}}$
$=2\sqrt{xy+\frac{1}{xy}}$

Áp dụng BĐT AM-GM tiếp:

$1\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$xy+\frac{1}{xy}=(xy+\frac{1}{16xy})+\frac{15}{16xy}$

$\geq 2\sqrt{xy.\frac{1}{16xy}}+\frac{15}{16xy}$

$\geq 2\sqrt{\frac{1}{16}}+\frac{15}{16.\frac{1}{4}}=\frac{17}{4}$

$\Rightarrow M\geq 2\sqrt{\frac{17}{4}}=\sqrt{17}$

Vậy $M_{\min}=\sqrt{17}$. Giá trị này đạt tại $x=y=\frac{1}{2}$

Bình luận (0)