Những câu hỏi liên quan
BT
Xem chi tiết
ND
Xem chi tiết
PT
6 tháng 6 2016 lúc 10:36

Vì x < y (a/m < b/m) và m > 0 nên a < b . 

x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m

a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y

Bình luận (0)
VQ
Xem chi tiết
DT
Xem chi tiết
BG
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PA
31 tháng 7 2017 lúc 16:24

x=a/m;y=b/m;x<y nên a<b

nên a+a<a+b

nên 2a/2m<a+b

nên x<z

tương tự có z<y

do đó x<z<y

Bình luận (0)
H24
Xem chi tiết
NM
15 tháng 8 2016 lúc 22:13

x=a/m=2a/2m             y=b/m=2b/2m

x<y nên a<b

=>2a<a+b và =>a+b<2b

=>2a/2m < a+b/2m < 2b/2m

=>x<y<z ( đpcm)

Bình luận (0)
NH
Xem chi tiết
BT
Xem chi tiết
TD
12 tháng 6 2017 lúc 10:24

theo đề bài ta có :

\(x=\frac{a}{m}\)\(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )

vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)

\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)

Vì a < b \(\Rightarrow\)a + b < b + c

\(\Rightarrow a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)

Bình luận (0)
ST
12 tháng 6 2017 lúc 10:24

Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)

\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)

Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)

Từ (1) và (2) suy ra đpcm

Bình luận (0)